
1

The Security Development
Lifecycle: SDL: A Process for
Developing Demonstrably More
Secure Software
Michael Howard
Steve Lipner

Copyright © 2006 Michael Howard (All); Steve
Lipner (All)

2

Foreword
Early one Monday morning, Steve Ballmer walked
into his conference room carrying a desktop. He put it
down on the table in front of me. "I want this fixed,
and I want it fixed by tomorrow," he said. Over the
weekend he had attended a wedding. The computer
belonged to his friend, the groom. "I worked all
weekend on this, and I couldn’t fix it," he reported. "I
want to send it back to him tomorrow."

We analzyed the machine, looking for the problem.
We’ve diagnosed other machines, but this one was
over the top—it was polluted through and through
with viruses and other malicious software. Some we
already knew about and could easily clean, but several
others we had never seen before. Regardless, the
machine was nearly a lost cause by the time the first
virus was done with it. I had the opportunity to go
through that virus’s source code. The first thing it did
was look around for and wipe out anything that had
the word virus in it. This included, of course, anything
with the moniker antivirus. It then disguised itself and
turned off Windows Update as well as everything to
do with group policy. The malware manipulated group
policy facilities to disable all sorts of system
capabilities. If you tried to run antivirus software on
the machine, nothing happened. This machine was
lost.

3

We did fix the machine—and some of Microsoft’s
new security and anti-malware products help protect
against the kinds of issues we found that day—but
more malicious software will follow in the future.
Security attacks are no longer the purview of teenagers
holed up in their bedrooms trying to gain bragging
rights at the expense of the world economy—attacks
are now a profitable criminal business. Make no
mistake, when it comes to the security battleground,
we are on a rapidly escalating path. This is a war that
will last far into the future. Hackers have gone beyond
attacking operating systems and network
servers—they are going after databases and they’re
going after code associated with data types. If there’s a
parser in the code you write, they’re going to go after
it. Our research as well as other industry statistics
show that attacks are moving farther up the stack from
the operating system to the applications sitting on top.
Everything, not just Microsoft Windows, is being
attacked: Linux, Mac OS X, Solaris, server and client
applications, and Web applications.

One of the best weapons you can have in your arsenal
is clean code. Others include software configurations
that are secure by default—so resilient that even
vulnerable code can’t be attacked successfully—and
security products that block or recover from attacks.
At Microsoft we have made two major sweeps to rid
our operating systems of security problems: first with
Microsoft Windows Server 2003 and then with
Windows XP SP2. These were investments that took
thousands of engineers months to complete. It also

4

refocused our efforts around how we built Windows
Vista. Our work in this area is ongoing, and through
these projects we have learned a great deal. Sharing
this learning with you is a high priority for us and the
top priority of this book, The Security Development
Lifecycle. No one course of action will cure all ills, but
the information in this book will help you do much
more to protect your customers when designing your
products, managing your projects, writing code,
assessing risk, and testing security scenarios.

The authors of this book, Michael Howard and Steve
Lipner, have a great deal of experience in this
arena—more than 45 years combined in software
security. More than 80,000 copies of Michael’s
Writing Secure Code, co-written by David LeBlanc
and first published in December of 2001, have reached
developers’ hands. It contains much of what we
learned through the work we did on Windows XP SP
2. The Security Development Lifecycle is the result of
knowledge we’ve gained from dealing with
vulnerabilities reported to the Microsoft Security
Response Center and from continually updating our
development processes to eliminate the root causes of
such vulnerabilities. It contains valuable how-to
information on everything from educating your
developers to conducting security reviews to handling
emergencies.

The best advice I can give, based on all my years in
the software industry, is to remind you that where
security is concerned, lunch is expensive. If you don’t

5

pay for it now, you’ll pay an order of magnitude more
for it later. You’ll have to dig out from under a
cacophony of phone calls, PR problems, unhappy
customers, and lost sales. Pay now or pay later—it
comes down to the way you develop your code. By the
time a vulnerability reaches the field, it’s way too late.
It’s way too late if it gets into a beta release. It’s too
late if you find problems in testing. And it’s too late if
security holes make it into a build of the software. I
hope the practices outlined in this book will help you
more effectively address problems that might be found
in your software, but more importantly, I hope it will
help you prevent such problems in the first place.

Jim Allchin

May 2006

Redmond, WA

6

Introduction
Rewind back in time to the security landscape of 2001
and 2002—here are some security comments and
headlines from that time:

▪ "Gartner Recommends Against Microsoft IIS"
(eWeek 2001a)

▪ "IT Bugs Out Over IIS Security" (eWeek 2001b)

▪ "Microsoft’s security woes" (CNET 2002a)

▪ "Microsoft’s security push lacks oomph" (CNET
2002b)

Now fast-forward to 2005 and 2006:

▪ "We actually consider Microsoft to be leading the
software [industry] now in improvements in their
security development life cycle." (CRN 2006)

▪ "Oltsik gives Microsoft credit for implementing
industry-leading security development processes
saying, ‘Microsoft is ahead of the pack in this
area.’" (Enterprise Strategy Group 2006)

▪ "Overall, security bulletins from Microsoft have
decreased in recent years" (eWeek 2005a)

▪ "Microsoft: Software Security Trendsetter?"
(eWeek 2005b)

This change is not an accident. The improvement is
due to only one thing: the development and adoption

7

of software development processes designed solely to
improve the security and privacy of Microsoft
software. The sum of those processes is a 13-stage
process called the Security Development Lifecycle
(SDL), which is the subject of this book.

What makes this book unique is that the SDL is not
theory; it works. And although there is no one silver
bullet to address security and privacy issues, the SDL
has had a large positive effect by significantly
reducing the number of vulnerabilities in real-world
code.

We want to stress the last point again. SDL is based on
real-world experience and it works. You may hear of
security consultants touting process improvements that
will lead to more secure software. Perhaps they do.
Perhaps they don’t! Who knows? What we can
categorically state is that the SDL does lead to more
secure software. The SDL is not perfect, of course, but
if you care about security and privacy, then you should
look at the SDL.

The goals of the SDL are twofold; the first is to reduce
the number of security vulnerabilities and privacy
problems, and the second is to reduce the severity of
the vulnerabilities that remain. You can never remove
all security and privacy vulnerabilities, simply because
when a product ships, it is built based on the security
best practice of the day, but security research and the
discovery of new attacks is never-ending.

8

Why Should You Read This
Book?
It’s probably best to start by explaining who is not the
primary audience for this book; this is not a book for
developers. That said, we don’t mean that developers
should not read this book. We mean there is very little
code in this book and no real implementation best
practices that would apply to developers. This book is
more broadly aimed at two sets of people. The first
group includes management and people who manage
software development teams and the software
development processes within their organizations. The
second group includes designers and architects.

9

Organization of This Book
This book is divided into three parts, and each part is
aimed at a different audience.

Part I, "The Need for the SDL"
This section addresses two issues: the first is why you
should care about improving the security of your
software in the first place, and the second is how to
sell such improvements to management. Everyone
should read Chapter 1, because it outlines why
security and privacy are important and why trying to
sell security is hard. Chapter 2, which addresses the
limitations with regard to security of current
development methods, and Chapter 3, which outlines
Microsoft’s experiences that led to the development of
the SDL, give general and process managers a picture
of "what doesn’t work" in building more secure
software. Chapter 4, is critical for upper-management
and middle-management readers, because it explains
the SDL in nontechnical terms and makes the reader
aware of the costs and benefits of the process.

10

Part II, "The Security Development
Lifecycle Process"
This 13-chapter section is the core of the book. Each
chapter maps to one of the SDL’s stages (Stage 0
through Stage 12) and lays out the requirements for
that stage. If you are responsible for improving the
security of your organization’s software, if you are
interested in process improvements in general, if you
are a software development methodology person, or if
you oversee the process work at your organization,
you should read this section in its entirety.

11

Part III, "SDL Reference Material"
The last part of the book is a series of references that
relate to SDL design and coding requirements. One
chapter also covers infusing Agile development
methods with the security requirements of the SDL. At
the time of this book’s publication, little or no
literature addresses security and Agile methods.
Chapter 18, is meant to start bridging this serious gap.

12

The Future Evolution of the
SDL
The SDL is not static. No software development
process that focuses on security could ever be static
because the security landscape evolves quickly. At
Microsoft we update the SDL twice a year in January
and July. The change process is quite elaborate, but it
is designed to ensure that the SDL incorporates only
requirements that will be effective at improving the
security of software. At a high level, the process order
is as described in the following four paragraphs.

People from around Microsoft propose changes to the
SDL. A change can be a requirement or a
recommendation. A recommendation is just that, and a
requirement is something that teams must adhere to in
future products. It’s not uncommon for a requirement
to start out six months or a year earlier as a
recommendation. The document describing the
recommendation or requirement must include the
proposed change to the SDL and the rationale for the
change. Most importantly, the proposal for change
must show demonstrable security improvement. We
don’t want SDL littered with well-intentioned but
ineffective requirements, and that means identifying at
least five Microsoft security bulletins that could have
been prevented if the proposed change were in place.
Also, if the change is to be a requirement, the
document must include ways to verify that the

13

requirement is adhered to. It is also worthwhile to
identify a team to test the proposal to provide concrete
and real-world feedback.

Next, the SDL steering group reviews the proposals
and provides feedback to the authors. The authors are
either members of the steering group or are invited to
participate in the meeting where their proposal is
reviewed.

Once the initial drafts are edited, the proposals are
opened up to a larger team of security people within
the company for comments.

Finally, the proposal is accepted, and goes into effect.
All products covered by the SDL are now subject to
the new requirements, and all should consider
implementing recommendations.

Given the dynamic nature of the SDL, we expect some
of the information in this book to be superseded in the
coming years. Check http://go.microsoft.com/fwlink/
?LinkId=65489 for future updates about the material
in this book.

14

What’s on the Companion
Disc?
The companion disc includes the following material:

▪ "The Basics". In our opinion, every person
contributing to software should have baseline
security knowledge. This online video
presentation and slide deck is what we believe to
be a reasonable baseline. The presentation will
not create security experts, but it serves as good
entry-level education for anyone building
software.

▪ Security Risk Assessment document. This
document, riskassess.rtf, is referred to in
Chapter 8, and is used to find areas of risk within
an application quickly, to help the security team
focus in on potential weak spots.

▪ banned.h. This file—referred to in
Chapter 11—is a C/C++ header file that can be
included in any C and C++ code to find banned
functions in your code quickly.

▪ MiniFuzz file fuzzer. Referred to in Chapter 12,
MiniFuzz is a set of C++ source code files that
provides the starting point for a file fuzzer. The
goal of the tool is not to provide a complete
fuzzing solution, but to give developers and
testers a feel for how fuzzers work and how you

15

can use the Windows debug APIs to catch errors
in the code being fuzzed.

▪ Attack Surface Rationale document. Referred
to in Chapter 13, this short document,
AttackSurfaceRationale.rtf, helps security people
understand why a product has attack surface
elements (such as open network ports) that are
enabled by default.

16

System Requirements
The two Word documents, attacksurface.rtf and
riskassess.rtf, were created with Microsoft Word 2003
but have been read by Microsoft Windows WordPad
in Windows XP SP2 and Microsoft Word 2000. The
system requirements are the same for Microsoft Word.

The MiniFuzz software was written using Microsoft
Visual C++ 2005, and the project file can only load
into Microsoft Visual Studio 2005. The system
requirements are the same as Visual Studio 2005.

Banned.h was written in Visual Studio 2005, but has
been tested with Visual C++ 2002, Visual C++ 2003,
and Visual C++ 2005 as well as GCC 3.4.x.

Finally, the "Basics" presentation requires Windows
Media Player 7 or later, Windows Media 9 codecs,
Internet Explorer 6, and XML Parser 4.0 Service Pack
1 (included on the disc).

17

Acknowledgments
This book would have been impossible to write
without the help of many people inside and outside
Microsoft. We’d like to thank the people who
reviewed drafts, critiqued, and in some cases correctly
criticized our work.

The following people are some of our peers in the
Security Engineering and Communications group at
Microsoft. These people work daily with engineering
groups at Microsoft to execute on the vision of the
SDL: Adel Abouchaev, Allen Jones, Bryan Nealer,
Chris Walker, Dave Ross, David Ladd, Eric Bidstrup,
George Stathakopoulos, Greg Wroblewski, John
Lambert, Jon Ness, Matt Thomlinson, Mike Mitchell,
Mike Reavey, Neill Clift, Nicholas Judge, Shawn
Hernan, and Tina Knutson.

Other people from across Microsoft provided
feedback, including Akshay Aggarwal, Amy Roberts,
Bill Ramos, Bjorn Levidow, Christopher Budd, David
LeBlanc, Irada Sadykhova, Jason Garms, JC Cannon,
John Gray, Jon Wall, Manoj Mehta, Peter Torr, Rose
Bigham, Talhah Mir, and Todd Webb.

Some of our customers tempered our views and
comments with real-world pragmatism, including
Adam Shostack, Alan Krassowski (Symantec),
Charles Chandler (NetIQ), Hugh Thompson (Security

18

Innovations), Kyle Randolph (Citrix), Michael Angelo
(NetIQ), and Mukesh Kumar (SafeCo).

Virgil Gligor, professor of electrical and computer
engineering at the University of Maryland, provided
an outside technical review of the draft. The final text
benefited greatly from Virgil’s long experience in
building secure systems, his wisdom, and his critical
eye.

Microsoft’s Trustworthy Computing Academic
Advisory Board, of which Virgil is a member, played
a significant role in motivating us to write this book.
We asked the board to review a paper on the SDL
(Lipner and Howard 2005), and in addition to
providing us with helpful comments, several board
members suggested that what we really needed to do
was write a book on the SDL. Those suggestions were
a major factor in our commitment to the project.

Finally, and most importantly, we would like to thank
the executive staff at Microsoft, from Bill Gates down,
for providing us with the mandate to carry out the
SDL within the company, and the thousands of
Microsoft employees who deliver more secure
software every day and realize that security and
privacy are just "part of getting the job done."

We sincerely thank you all.

Michael Howard

Steven B. Lipner

19

Redmond, WA June 2006

20

References

Microsoft Press Support

Every effort has been made to ensure the accuracy of this
book. Microsoft Press provides corrections for books through
the World Wide Web at the following address:

http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base
and enter a query regarding a question or issue that you may
have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this
book, please send them to Microsoft Press using either of the
following methods:

Postal Mail:

▪ Microsoft Press Attn: Security Development Lifecycle
Editor One Microsoft Way Redmond, WA 98052-6399

E-Mail:

▪ mspinput@microsoft.com

21

http://www.microsoft.com/mspress/support/
http://www.microsoft.com/mspress/support/search.asp

Bibliography
[biblio0_001] (eWeek 2001a) http://www.eweek.com/
article2/0,1759,1240915,00.asp. September 2001.

[biblio0_002] (eWeek 2001b) http://www.eweek.com/
article2/0,1759,97182,00.asp. July 2001.

[biblio0_003] (CNET 2002a) http://news.com.com/
Commentary+Microsofts+security+woes/
2009-1001_3-808870.html. January 2002.

[biblio0_004] (CNET 2002b) http://news.com.com/
Microsofts+security+push+lacks+oomph/
2100-1001_3-808010.html. January 2002.

[biblio0_005] (CRN 2006) Rooney,Paula. "Is
Windows Safer?" http://www.crn.com/sections/
coverstory/
coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240.
February 2006.

[biblio0_006] (Enterprise Strategy Group 2006)
Oltsik, John, Senior Analyst, Enterprise Strategy
Group. "Good security news to be in short
supply in 2006," http://news.com.com/
Good+security+news+to+be+in+short+supply+in+2006/
2010-1071_3-6028980.html. CNET News.com,
January 2006.

[biblio0_007] (eWeek 2005a) Naraine,Ryan.
"Microsoft Claims Security Win with New

22

http://www.eweek.com/article2/0,1759,1240915,00.asp
http://www.eweek.com/article2/0,1759,1240915,00.asp
http://www.eweek.com/article2/0,1759,97182,00.asp
http://www.eweek.com/article2/0,1759,97182,00.asp
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240

Development Rules," http://www.eweek.com/
article2/0,1759,1779769,00.asp. March 2005.

[biblio0_008] (eWeek 2005b) http://www.eweek.com/
article2/0,1759,1860574,00.asp. September 2005.

[biblio0_009] (Lipner and Howard 2005)
Lipner,Steve, and MichaelHoward. "The
Trustworthy Computing Security
Development Lifecycle,"
http://msdn.microsoft.com/security/
default.aspx?pull=/library/en-us/dnsecure/html/
sdl.asp. MSDN, March 2005.

23

http://www.eweek.com/article2/0,1759,1779769,00.asp
http://www.eweek.com/article2/0,1759,1779769,00.asp
http://www.eweek.com/article2/0,1759,1860574,00.asp
http://www.eweek.com/article2/0,1759,1860574,00.asp

Part I. The Need for the SDL

24

Chapter 1. Enough Is Enough:
The Threats Have Changed
In this chapter:

Worlds of Security and Privacy Collide

Another Factor That Influences Security: Reliability

It’s Really About Quality

Why Major Software Vendors Should Create More
Secure Software

Why In-House Software Developers Should Create
More Secure Software

Why Small Software Developers Should Create More
Secure Software

The adage "Necessity is the mother of invention" sums
up the birth of the Security Development Lifecycle
(SDL) at Microsoft. Under the banner of Trustworthy
Computing (Microsoft 2002), Microsoft heard the call
from customers requiring more secure software from
their software vendors and changed its software
development process to accommodate customers’
pressing security needs and, frankly, to preserve the

25

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch01s04.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch01s04.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch01s05.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch01s05.html

company’s credibility. This book explains that process
in detail with the simple goal of helping you update
your present software development process to build
more secure software.

The first question that probably comes to mind is,
"Why bother with security?" The answer is simple: the
world is more connected now than it has ever been,
and no doubt it will become even more connected over
time. This incredible level of interconnectedness has
created a huge threat environment and, hence, hugely
escalated risk for all software users. The halcyon days
of defacing Web sites for fun and fame are still with us
to an extent, but the major and most dangerous attacks
are now upon us: cybercrime has arrived. What makes
these attacks so dangerous is that the cybercriminal
can attack and exploit his target system silently
without creating any obvious sign of a break-in. Now,
the criminal can access private or sensitive data or use
a compromised system for further attacks on other
users, as in the cases of phishing (APWG 2006) and
extortion.

The cost-benefit ratio for a criminal is defined by
Clark and Davis (Clark and Davis 1995) as

Mb + Pb > Ocp + OcmPaPc

where

▪ Mb is the monetary benefit for the attacker.

▪ Pb is the psychological benefit for the attacker.

26

▪ Ocp is the cost of committing the crime.

▪ Ocm is the monetary costs of conviction for the
attacker (future lost opportunities and legal
costs).

▪ Pa is the probability of being apprehended and
arrested.

▪ Pc is the probability of conviction for the
attacker.

If the left side of the equation is greater than the right
side, the benefit of an attack outweighs the costs and a
crime could ensue. Of course, this does not imply that
all people will commit a crime given enough
opportunity! Remember the old model of 10:80:10: 10
percent of people would never commit a crime, no
matter what; 80 percent are opportunists; and 10
percent can’t be deterred, no matter what. By raising
the probability of getting caught and lowering the
chance of success, you deter the 80 percent and make
the task harder for the "evil 10."

The software development industry cannot easily
control Pa or Pc, although the industry can work with
the law-enforcement community to provide
information that helps apprehend criminals. However,
some countries have no cybercrime laws.

Users and administrators of computer systems could
control Mb a little by not storing data of value to the
attacker, but this solution is infeasible because much
of the benefit of using computers is that they allow

27

businesses to operate more efficiently, and that means
storing and manipulating data of value to both the
customer and the attacker. A well-designed and secure
system will increase Ocp, making it expensive for an
attacker to successfully mount an attack and
motivating the attacker to move on to softer targets at
other IP addresses.

From an Internet attacker’s perspective, the element
that influences this equation the most is Pa because the
chance of being found and apprehended is too often
very small. Admittedly, some miscreants have been
apprehended (FBI 2005, CNN 2003), but most attacks
are anonymous and go unnoticed by users and system
administrators alike. In fact, the most insidious form
of attack is the one that goes unnoticed.

As operating system vendors have focused on shoring
up core operating system security, cybercriminals have
simply moved to more fertile ground higher in the
application stack (eWeek 2004)—such as databases
(ZDNet 2006a), antivirus software (InformationWeek
2005), and backup software (ZDNet 2006b)—because
there is a better chance of a successful attack and the
reward is worth the effort. Attacking an operating
system does not directly yield valuable data for a
criminal, but attacking a database, a customer
relationship management (CRM) tool, a health-care
system, or a system management tool is like winning
the lottery and is reflected in the Ocm variable in the
equation previously mentioned. It doesn’t matter how
big or small your software or your company might

28

appear to be; if the attacker thinks it’s worth the effort,
and the gains are many and the risk is low, then any
insecure application you use might very well come
under attack (Computerworld 2006).

Microsoft products are not the only targets of attack.
That’s why we wrote this book. A cursory glance at
any security-bug tracking database will show that
every platform and every product includes security
bugs (OSVDB 2006a, OSVDB 2006b, OSVDB 2006c,
OSVDB 2006d).

Furthermore, the skill required to reverse-engineer
security updates (Flake 2004) and build exploitations
is easier than ever (Moore 2006). As Mary Ann
Davidson, Oracle Corporation’s chief security officer,
points out:

You don’t have to be technically sophisticated to
be a hacker anymore. Hacking isn’t just for
bragging rights and chest thumping. There’s
real money in it. (eWeek 2005)

The implications of attacks on applications rather than
on operating systems cannot be underestimated. Most
software vendors build business-productivity or
end-user applications, not operating system
components. And most security-savvy administrators
have focused their limited time on securing their
operating system installations and putting
network-level defenses such as firewalls in place.

One could argue that the software industry focused
almost exclusively on securing operating systems

29

when it should have considered the security of
applications with just as much effort. One could also
argue that the reason attackers are targeting
applications is because the operating system vendors
have, on the whole, done a reasonable job of securing
the base operating systems in common use.
Remember, everything is relative—we said
"reasonable," not "good"—but regarding application
security, most operating systems are in a better
security state than applications.

To compound the problem, many application vendors
are dangerously unaware of the real security issues
facing customers (CNN 2002), which has led to a false
sense of security within the user community and a lack
of urgency within the vendor community. Many users
and vendors see security as an operating system
problem or a network perimeter and firewall problem,
but it has become obvious that this is simply untrue.

In short, if you build software, and your software can
be accessed by potentially malicious users inside or
outside the firewall, the application will come under
attack. But this alone is not a sufficient reason to
consider security in the development life cycle. The
following sections address additional considerations.

Worlds of Security and Privacy
Collide
For security to be accepted within an organization, and
for software developers to take security seriously,

30

security must accommodate, or at least acknowledge,
business needs and business problems. To be
successful in an organization, secure software
development requires a business benefit. In the case of
Microsoft, the business benefit was pretty
obvious—our customers demanded more secure
software.

But for some people, the decision to make software
more secure appears to be not so simple. This is where
privacy enters the picture. Trying to sell security to
project managers and to upper management can be
difficult because there is little, if any, demonstrable
return on investment (ROI) data for employing secure
development practices. Frankly, upper management is
tired of nebulous "we could be attacked" stories that
are used to gain budget for security. This is often not a
productive way to sell security. But privacy is another
matter altogether. People understand what privacy is
and what it means when personal, confidential, or
personally identifiable information is leaked to
miscreants. When users think of security, most often
they think about credit card information or online
banking passwords being stolen. This, to be pedantic,
is not security; it is privacy. Administrators, Chief
Information Officers (CIOs), and Chief Information
Security Officers (CISOs) should think in terms of risk
to business-critical data. Privacy plays a big part in
risk calculations.

31

Privacy and Security

Many people see privacy and security as different
views of the same issue. However, privacy can be
seen as a way of complying with policy and
security as a way of enforcing policy. Restrooms
are a good analogy of this concept. The sign on a
restroom door indicates the policy for who should
enter the restroom, but no security prevents anyone
who might want to enter. Adding a lock to the door
would provide security to help enforce the privacy
policy.

Note

Privacy’s focus is compliance with regulatory
requirements (Security Innovation 2006),
corporate policy, and customer expectations.

Risk managers try to put a monetary value on risk. If,
according to risk management, the value of protected
data if exposed to attackers is, say, $10,000,000, it
probably makes sense to spend the $200,000 needed
by the development team to remove all known design
and coding issues and to add other defenses to protect
against such attacks.

32

Note

Risk management can assign a monetary value to
the risk of disclosing data.

A security bug such as a SQL injection bug (Howard,
LeBlanc, and Viega 2005) is a serious problem to have
in your Web-based service-oriented application, but
potential privacy issues are what make this class of
bug so grave. A SQL injection bug allows an attacker
to wreak havoc on an underlying database, including
corrupting information and viewing sensitive data. In
some instances, a SQL injection attack can be a
steppingstone to complete takeover of a network
(Johansson 2005). SQL injection vulnerabilities are
reasonably common in database applications, but some
have been discovered in database engines also (Red
Database 2006).

SQL injection issues are not the only form of security
bug that has privacy ramifications. Any bug that
allows an attacker to run code of his bidding can
potentially lead to privacy violations. Examples
include some forms of buffer overflows,
command-injection bugs, integer arithmetic issues,
and cross-site scripting bugs. But more subtle issues
that do not allow arbitrary code execution, such as

33

cryptographic weaknesses and data leakage faults, can
lead to privacy issues also.

Warning

Much noise has been made about not running as
an administrator or root account when operating a
computer. We authors are vocal commentators
about this issue, and this has helped force
fundamental changes in Microsoft Windows
Vista; users are, by default, ordinary users and not
administrators. Even members of the local
Administrators group are users until they are
elevated to perform administrative tasks. Running
as a normal user does indeed provide security
benefits, but it may provide only a limited benefit
for privacy protection. Malicious code running as
the user can still access any sensitive data that can
be read by the user.

The ability of an unauthorized person to view data, an
information disclosure threat, can be a privacy issue.
In some countries and United States, it could lead to
legal action under U.S. state or federal or international
privacy laws and industry-specific regulations.

In short, privacy is a huge driver for employing
effective security measures and making applications
secure from attack. Security is not the same as privacy,

34

but effective security is a prerequisite for protecting
the privacy of data about employees and customers.

It’s also important to remember that, in some cases,
security and privacy can be diametrically opposed to
one another. For example, good authentication is a
venerable and effective security defense, but it can
also raise a privacy issue. Anytime you provide your
identity to a computer system, any tasks you perform
or any resources you access while you are logged on
can be collected and used to model your computer
habits. One way to defend against this is to not
authenticate, but that’s hardly secure.

A good example of privacy and security colliding is
the design of Google Desktop version 3 beta. This
product allows a user to upload his or her potentially
personal or private documents to Google’s servers.
This design prompted a Gartner analyst to warn that
the product posed an "unacceptable security risk"
(ZDNet 2006c). It may seem like we’re splitting hairs,
but this is not a security risk; it’s a privacy risk. It’s
very easy to mix the two concepts. Note that Time
magazine ran a cover story on February 20, 2006, with
the headline "Can We Trust Google with Our
Secrets?" (Time 2006). Privacy issues can quickly
yield negative headlines.

But wait, there’s more!

35

Another Factor That Influences
Security: Reliability
Additional aspects to consider are service-level
agreements with your customers and maintaining
uptime. Crashed or unresponsive software will
probably not satisfy customers or meet their needs.
Just as privacy and security are not the same, security
is not the same as reliability. But like privacy and
security, reliability and security share some goals. For
example, any security mitigation that protects against
denial of service (DoS) attacks is also a reliability
feature.

However, like security and privacy, security and
reliability can be at odds. Take a critical server on a
protected network as an example. Once the computer’s
security audit log is full, the machine can no longer
log security events, which means that an attacker has a
window of opportunity to access sensitive resources
on the computer without being audited. In this
example, it is not unheard of to simply cause the
computer to stop functioning on purpose when the
audit log is full. For example, the U.S. government
protection profiles (NIAP 2005) for evaluating the
security of operating systems require the availability
of the CrashOnAuditFail option in Microsoft
Windows (Microsoft 2003). When this option is set,
the computer will crash if the security log is full or if a
security-related audit entry cannot be written

36

successfully. Clearly, this is a reliability concern, but
it’s a valid security defense for some customers. In
fact, in some legal-compliance scenarios, you might
have no alternative but to crash a computer if auditing
can no longer continue.

Another example of security working at odds with
reliability is the ability of Windows to automatically
restart a service if the service fails. This is an excellent
reliability feature, but if it is configured incorrectly, it
could be a security issue. Imagine that a service has a
bad security vulnerability, like a buffer overrun, and
an attacker attempts to compromise a system by
exploiting the buffer overrun. If the attacker gets the
attack wrong on the first attempt, the service crashes,
and then, depending on the configuration, the service
might restart. The restart would give the attacker
another chance to get the attack right. Every time he
gets it wrong, the service crashes and restarts!

Figure 1-1 shows the service recovery configuration
dialog box for the print spooler. Configuration options
present a tradeoff between security and reliability. The
application can crash only twice in one day: if it
crashes again, it will not restart. Also, there is a delay
of one minute before the service starts up again. This
will slow down an attacker substantially.

37

Figure 1-1. Microsoft Windows XP service recovery
configuration dialog box.

Many common security coding bugs and design errors
can lead to reliability issues such as some forms of
buffer overrun, integer arithmetic bugs, memory
exhaustion, referencing invalid memory, or array
bounds errors. All of these issues have forced software
developers to create security updates, but they are

38

reliability issues, too. In fact, the OpenBSD project
refers to some of its security bugs as reliability bugs,
although other vendors would call the fix a security
fix. One such example is a bug fixed by OpenBSD in
the BIND DNS daemon in late 2004 (OpenBSD
2004). This is clearly a DoS bug that most vendors
would treat as a security fix, but OpenBSD treats it as
a reliability fix. Technically, the OpenBSD team is
correct, but no major OS vendor differentiates
between reliability and security fixes.

Note

Microsoft’s Trustworthy Computing initiative has
four pillars. Three of them are technical,
addressing the issues we have discussed so far:
Security, Privacy, and Reliability. The selection of
these three technical pillars is not accidental. (For
completeness, the fourth pillar is Business
Practices.)

Figure 1-2 shows the results of an analysis of security
bugs that were assigned a CVE number by Common
Vulnerabilities and Exposures (CVE 2006) between
2002 and 2004. The authors analyzed the CVE bug
categories (CVE 2005) to determine whether they had
security, privacy, or reliability ramifications. Over this
three-year period, CVE created entries for 3,595

39

security bugs from all corners of the software industry.
Notice that the sum is greater than 3,595 because some
bugs are both privacy and reliability issues.

Figure 1-2. Analysis of CVE statistics showing a
breakdown of security, privacy, and reliability issues.

All the bugs are security bugs, but some also have
privacy or reliability consequences, or both.

40

It’s Really About Quality
Ultimately, all the issues we have mentioned are
quality bugs. Figure 1-3 shows the relationship among
quality, security, privacy, and reliability.

Figure 1-3. The relationship among quality, privacy,
security, and reliability.

It is worth mentioning that some elements overlap, as
noted in our description of the CVE analysis. Overlap
can occur in the following combinations:

41

▪ Security and privacy. Examples include
mitigation of privacy issues using encryption,
which is a security technology.

▪ Security and reliability. For example, a DoS
threat is also a reliability issue.

▪ Reliability and privacy. For example, an
application might crash or otherwise fail, yielding
sensitive information in an error message. This is
also a security issue.

You’ll also notice that portions of the privacy,
security, and reliability elements extend beyond the
quality circle:

▪ Security. If a user invites malicious software
onto the computer, this is a security problem but
not a security-quality issue.

▪ Privacy. If a user willingly divulges personal
data to an untrustworthy attacker, through a
phishing attack for example, this is not a
privacy-quality issue.

▪ Reliability. If a person trips over and pulls out a
computer’s power cable, this is not a software
reliability-quality issue.

What we’re trying to say is that security should not be
considered an isolated endeavor. Only when you start
to think about security holistically—as the intersection
of privacy, reliability, and quality—does it start to
make business-value sense. At that point, you can

42

better sell secure-software improvements to upper
management.

Important

Security bugs that lead to disclosure of sensitive,
confidential, or personally identifiable data are
privacy issues and can have legal ramifications.
Security bugs that lead to reliability issues could
mean reduced uptime and failure to meet
service-level agreements.

43

Why Major Software Vendors
Should Create More Secure
Software
Improving software security should be an easy sell if
your software has a significant number of users; the
sheer cost of applying security updates makes it worth
getting security, privacy, and reliability right early in
the process rather than putting the burden on your
customers to apply updates. And frankly, if you have a
large number of users, every security vulnerability in
your product puts many customers at risk of
attack—or worse, exploitation—because you will
never have 100-percent patch deployment, and a
deployment of less than 100 percent means that a large
number of users are put at risk.

If your software is a business-critical application,
improved security should again be an easy sell
because of the business impact of a failed system.

The goal of creating more secure software and
reducing customer pain is why Microsoft has adopted
SDL. SDL is not free; it costs time, money, and effort
to implement. But the upfront benefits far outweigh
the cost of revisions, developing and testing security
updates, and having customers deploy the updates.
Microsoft has received a lot of criticism in the past
about the insecurity of some of its products, and this
criticism was a major factor in the company’s

44

commitment to improve its software development
processes. A vocal critic of Microsoft’s security
problems was John Pescatore of Gartner. In September
2001, Pescatore advised Gartner clients to evaluate the
cost of ownership of using Microsoft Internet
Information Services (IIS) 5.0 Web server on
Internet-facing computers and to seek alternatives if
the costs were justified (Gartner 2001). After seeing
the progress Microsoft has made since that date,
Pescatore has stated, "We actually consider Microsoft
to be leading the software [industry] now in
improvements in their security development life cycle
[SDL]," and "Microsoft is not the punching bag for
security anymore" (CRN 2006).

In an interesting (almost perverse) turnaround, the
main IIS competitor, Apache on Linux, is now, and
has been for some time, the most frequently attacked
Web server on the Internet. Not only does Apache on
Linux (Secunia 2006a) have more security bugs than
IIS 6.0 on Windows (Secunia 2006b), it is attacked
and compromised more than IIS on Windows (Zone-H
2006). Admittedly, many attacks result from poor
server administration and insecure configuration, but
system management is a critical part of the security
equation. We discuss this issue in more detail in
Chapter 10.

A Challenge to Large ISVs
We challenge all independent software vendors,
especially those who have more than 100,000

45

customers, to change their software development
processes. Pay close attention to what we say next: If
you are not implementing a process similar to SDL,
the processes you have now simply do not create more
secure products. It’s time to admit this and do
something about it. Your customers demand it.

At Microsoft, our customers have benefited from a
vulnerability reduction of more than 50 percent
because of SDL. Admittedly, we still have a great deal
of work ahead of us, and we are under no illusion that
we’re "done" with security. Jim Allchin, copresident
of the Platforms and Services Division at Microsoft,
stated, "At no time am I saying this system is
unbreakable" (CNET 2006).

That said, Microsoft has taken on the challenge, and
SDL has galvanized the company to deliver more
secure products to customers. You must do likewise,
or attackers will smell blood and the competition that
offers products that are more secure than yours will
take sales from you. Rebuilding customer trust and
goodwill will be difficult at best. We say this from
painful experience.

Numerous consumers are starting to ask what their
vendors are doing to secure their products from attack.
What will your answer be?

46

Why In-House Software
Developers Should Create
More Secure Software
The main benefits of SDL for in-house developers are
reduced privacy and reliability exposure. Yes, there is
a pure security benefit, but as we mentioned earlier,
the benefits of security to in-house applications are
hard to quantify. Privacy has a risk component that
senior managers and risk managers understand, and
reliability has an uptime and service-level agreement
component that managers also understand. Sell
security as privacy and reliability, with a security
bonus!

Customer-facing e-commerce applications are, of
course, high-risk components and should be developed
with utmost care.

47

Why Small Software
Developers Should Create
More Secure Software
Creating more secure software is a harder sell for
smaller companies because even a small amount of
security work up front costs time and money.
Although "hacking the code" is effective at creating
code rapidly, it is also extremely effective at creating
bugs.

Smaller development houses often have a lot of
personal pride and ego tied up in their code; so look at
security as a measure of quality. Most importantly, if
you get it right up front, the cost of fixing bugs later
diminishes rapidly. Many sources outline the benefits
of building better-quality and more secure software
early. One such example is in Chapter 9.

It’s fair to say that most people don’t mind doing hard
work; they just hate reworking. Fixing security bugs
can be difficult and time consuming. You can pay now
and increase the odds that you’ll get it right, or you
can pay much more later. As a small development
house or an individual developer, you probably have
little spare time, and implementing more secure
software up front saves you time in the long run.
Better-quality software means less reworking, which
translates into more time to ski, work out, play with
the kids, read a good book (not about software!), or go

48

on a date with your significant other. You get the
picture. We have observed at Microsoft that having
fewer security vulnerabilities also means that there is
more time to add useful features that customers want
to our products, and this translates into more
customers.

49

Summary
Selling security process improvements to upper
management is not easy because security professionals
have often focused on vague although troubling
potential threats. Security experts are often seen as
alarmists in the boardroom. Selling security as a
means to mitigate risk—most notably privacy issues
that could lead to legal action from affected customers
and reliability issues that could lead to violation of
service-level agreements and system downtime—is
much more plausible and can be assigned monetary
value by managers. Risks and potential costs are
associated with the privacy issue and with downtime.

Threats have changed, and the security and privacy
landscape is not what it was in 2001. Everything is
connected today, and criminals are being lured to the
online community because that’s "where the money
is." There is no indication that this trend will abate any
time soon.

The software industry’s past is littered with security
bugs from all software vendors. If our industry is to
protect the future and deliver on the vision of
Trustworthy Computing, we need to update our
processes to provide products that are more secure,
more private, and more reliable for customers.

Microsoft has learned from and has adopted the SDL
to remedy its past mistakes. You should, too.

50

Microsoft has seen vulnerabilities reduced more than
50 percent because of the SDL. You will, too.

51

References

52

Bibliography
[biblio01_001] (Microsoft 2002) Trustworthy
Computing site, http://www.microsoft.com/mscorp/
twc/default.mspx.

[biblio01_002] (APWG 2006) Anti-Phishing Working
Group, http://www.antiphishing.org/.

[biblio01_003] (Clark and Davis 1995) Clark,J.R.,
and W.L.Davis. "A Human Capital Perspective
on Criminal Careers," Journal of Applied Business
Research, volume 11, no 3. 1995, pp. 58–64.

[biblio01_004] (FBI 2005) "FBI Announces Two
Arrests in Mytob and Zotob Computer Worm
Investigation," http://www.fbi.gov/pressrel/
pressrel05/zotob_release082605.htm. August 2005.

[biblio01_005] (CNN 2003) "Teenager arrested in
‘Blaster’ Internet attack," http://www.cnn.com/
2003/TECH/internet/08/29/worm.arrest/. August
2003.

[biblio01_006] (eWeek 2004) "App Developers
Need to Redouble Security Efforts,"
http://www.eweek.com/article2/
0,1759,1663716,00.asp. September 2004.

[biblio01_007] (ZDNet 2006a) Ou,George. "Oracle
from unbreakable to unpatchable,"
http://blogs.zdnet.com/Ou/?p=151&tag=nl.e622.
January 2006.

53

http://www.microsoft.com/mscorp/twc/default.mspx
http://www.microsoft.com/mscorp/twc/default.mspx
http://www.antiphishing.org/
http://www.fbi.gov/pressrel/pressrel05/zotob_release082605.htm
http://www.fbi.gov/pressrel/pressrel05/zotob_release082605.htm
http://www.cnn.com/2003/TECH/internet/08/29/worm.arrest/
http://www.cnn.com/2003/TECH/internet/08/29/worm.arrest/
http://www.eweek.com/article2/0,1759,1663716,00.asp
http://www.eweek.com/article2/0,1759,1663716,00.asp

[biblio01_008] (InformationWeek 2005)
Keizer,Gregg. "Bug Bites McAfee Antivirus,"
http://www.informationweek.com/
showArticle.jhtml?articleID=175007526. December
2005.

[biblio01_009] (ZDNet 2006b) Evers,Joris. "Backup
software flaws pose risk," http://news.zdnet.com/
2100-1009_22-6028515.html. January 2006.

[biblio01_010] (Computerworld 2006)
Vijayan,Jimkumar. "Targeted attacks expected
to rise in ’06, IBM study says,"
http://www.computerworld.com/securitytopics/
security/story/0,10801,107992,00.html. January 2006.

[biblio01_011] (OSVBD 2006a) Open Source
Vulnerability Database. Oracle, http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=oracle.

[biblio01_012] (OSVDB 2006b) Open Source
Vulnerability Database. CRM software,
http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=crm.

[biblio01_013] (OSVDB 2006c) Open Source
Vulnerability Database. LotusDomino,
http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=lotus+domino.

[biblio01_014] (OSVDB 2006d) Open Source
Vulnerability Database. Firewalls,
http://www.osvdb.org/
searchdb.php?action=search_title&vuln_title=firewall.

54

http://www.informationweek.com/showArticle.jhtml?articleID=175007526
http://www.informationweek.com/showArticle.jhtml?articleID=175007526
http://www.computerworld.com/securitytopics/security/story/0,10801,107992,00.html
http://www.computerworld.com/securitytopics/security/story/0,10801,107992,00.html
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=oracle
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=oracle
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=crm
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=crm
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=lotus+domino
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=lotus+domino
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=firewall
http://www.osvdb.org/searchdb.php?action=search_title&vuln_title=firewall

[biblio01_015] (Flake 2004) Flake,Halvar.
"Structural Comparison of Executable
Objects," http://www.sabre-security.com/files/
dimva_paper2.pdf.

[biblio01_016] (Moore 2006) Moore,H.D. Metasploit
Project, http://www.metasploit.com.

[biblio01_017] (eWeek 2005) Fisher,Dennis, and
BrianFonseca. "Data Thefts Reveal Storage
Flaws," http://www.eweek.com/article2/
0,1759,1772598,00.asp. March 2005.

[biblio01_018] (CNN 2002) Evers,Joris. "Ellison:
Oracle remains unbreakable,"
http://archives.cnn.com/2002/TECH/industry/01/21/
oracle.unbreakable.idg/index.html. January 2002.

[biblio01_019] (Security Innovation 2006) Security
Innovation, Inc. "Regulatory Compliance
Demystified: An Introduction to Compliance
for Developers," http://msdn.microsoft.com/
security/default.aspx?pull=/library/en-us/dnsecure/
html/regcompliance_demystified.asp. MSDN, March
2006.

[biblio01_020] (Howard, LeBlanc, and Viega 2005)
Howard,Michael, DavidLeBlanc, and JohnViega. 19
Deadly Sins of Software Development. New York,
NY: McGraw-Hill, 2005. Chapter 4, "SQL Injection."

[biblio01_021] (Johansson 2005) Johansson,Jesper.
"Anatomy of a Hack," http://www.microsoft.com/

55

http://www.sabre-security.com/files/dimva_paper2.pdf
http://www.sabre-security.com/files/dimva_paper2.pdf
http://www.metasploit.com
http://www.eweek.com/article2/0,1759,1772598,00.asp
http://www.eweek.com/article2/0,1759,1772598,00.asp
http://www.microsoft.com/australia/events/teched2005/mediacast.aspx

australia/events/teched2005/mediacast.aspx.
Microsoft Tech.Ed, 2005).

[biblio01_022] (Red Database 2006) Red Database
Security. "Published Oracle Security Alerts,"
http://www.red-database-security.com/advisory/
published_alerts.html.

[biblio01_023] (ZDNet 2006c) Espiner,Tom.
"Google admits Desktop security risk,"
http://news.zdnet.co.uk/0,39020330,39253447,00.htm.
February 2006.

[biblio01_024] (Time 2006) "Can We Trust
Google with Our Secrets?" Time, February 20,
2006.

[biblio01_025] (NIAP 2005) National Information
Assurance Partnership, National Security Agency.
"Protection Profiles," http://niap.nist.gov/pp/
index.html.

[biblio01_026] (Microsoft 2003) Microsoft Help and
Support. "How To Prevent Auditable Activities
When Security Log Is Full,"
http://support.microsoft.com/kb/140058/. Last Review:
May 2003.

[biblio01_027] (OpenBSD 2004) OpenBSD 3.6
release errata & patch list. "002: Reliability Fix,"
http://www.openbsd.org/errata36.html. November
2004.

56

http://www.microsoft.com/australia/events/teched2005/mediacast.aspx
http://www.red-database-security.com/advisory/published_alerts.html
http://www.red-database-security.com/advisory/published_alerts.html
http://www.openbsd.org/errata36.html

[biblio01_028] (CVE 2006) Common Vulnerabilities
and Exposures. http://cve.mitre.org.

[biblio01_029] (CVE 2005) Christey,StevenM. "Re:
Vulnerability Statistics," http://seclists.org/lists/
webappsec/2005/Jan-Mar/0056.html. January 2005.

[biblio01_030] (Gartner 2001) Pescatore,John.
"Nimda Worm Shows You Can’t Always Patch
Fast Enough," http://www.gartner.com/
DisplayDocument?doc_cd=101034. September 2001.

[biblio01_031] (CRN 2006) Rooney,Paula. "Is
Windows Safer?" http://www.crn.com/sections/
coverstory/
coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240.
February 2006.

[biblio01_032] (Secunia 2006a) "Vulnerability
Report: Apache 2.0.x," http://secunia.com/product/
73/.

[biblio01_033] (Secunia 2006b) "Vulnerability
Report: Microsoft IIS 6.0," http://secunia.com/
product/1438/.

[biblio01_034] (Zone-H 2006) Zone-H, the Internet
Thermometer. http://www.zone-h.org.

[biblio01_035] (CNET 2006) Evers,Joris. "Allchin:
Buy Vista for the security," http://news.com.com/
Allchin+Buy+Vista+for+the+security/
2100-1012_3-6032344.html?tag=st.prev. January
2006.

57

http://www.gartner.com/DisplayDocument?doc_cd=101034
http://www.gartner.com/DisplayDocument?doc_cd=101034
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240
http://www.crn.com/sections/coverstory/coverstory.jhtml;jsessionid=VV1Q351RM5A1YQSNDBOCKH0CJUMEKJVN?articleId=179103240
http://www.zone-h.org

Chapter 2. Current Software
Development Methods Fail to
Produce Secure Software
In this chapter:

"Given enough eyeballs, all bugs are shallow"

Proprietary Software Development Methods

Agile Development Methods

Common Criteria

Software engineering companies and companies
creating their own lines of business software have
been looking forever for the classic "silver bullet" to
deliver great quality software on time and under
budget. As Fred Brooks mentions in the classic text
The Mythical Man-Month, there is no such thing as the
software silver bullet (Brooks 1995). The same lack of
an easy solution applies to software security. In fact,
we’re going to go one step further and say that present
software engineering practice in the industry does not
lead to secure software at all. If any of the current
state-of-the-art processes did create secure software,
we’d simply see fewer security errata and bulletins
from software vendors. But the industry suffers a huge

58

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch02s02.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch02s03.html

security problem; everyone has security bugs, often
very bad security bugs. This leads us to conclude that
present security practices don’t create secure code.

In this chapter, we’ll look at a number of software
development and certification processes to outline
why they do not create code that is secure from attack.
We’ll look at the following:

▪ "Given enough eyeballs, all bugs are shallow"

▪ Proprietary Software Development Methods

▪ Agile Development Methods

▪ Common Criteria

Let’s look at these in detail, outlining why each
method does not produce more secure software.

"Given enough eyeballs, all
bugs are shallow"
First discussed by Eric Raymond in his well-known
paper "The Cathedral and the Bazaar," this is the battle
cry of the open source movement (Raymond 1997).
The more formal definition of the slogan, as expressed
in the paper, is as follows:

Given a large enough beta-tester and
co-developer base, almost every problem will be
characterized quickly and the fix obvious to
someone.

59

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch02s02.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch02s03.html

Now before we start a religious debate, we want to
explain something. Both authors have a deep respect
for the open source software community; we both
believe that opening source code is of value to some
customers and users and that the ability to change code
also has benefits for a few customers. But the software
produced by the open source community is not secure
from attack, and it most certainly is not secure simply
because the code can be reviewed by many people.
The concept of "Given enough eyeballs, all bugs are
shallow" is wrong on many fronts: it assumes that
people reviewing the code are motivated to review the
code, that the people doing the reviews know what
security bugs are, and that there is a critical mass of
informed and motivated reviewers. But more
important, and as we’ll see, it just misses the point
altogether. Let’s look at each aspect in detail.

Incentive to Review Code
The author of this chapter (Michael) has worked with
thousands of developers, teaching them how to review
code and designs for security bugs. He has also
reviewed more code than he cares to remember. And if
he’s learned one thing from all that experience, it’s
that most people don’t enjoy reviewing code for bugs
and vulnerabilities. Given the choice of reviewing
code for bugs—including security bugs—or working
on the newest feature in an upcoming software
product, developers will choose writing new code.
Developers are creative, and creating new features is

60

the epitome of inventiveness. Another reason for not
wanting to review code is that the task is slow,
tiresome, and boring.

Note

Based on analysis at Microsoft, at most an
average developer can review about 1,500 lines of
C code a day or 1,100 lines of C++ code a day
looking for deep security bugs. It is, of course,
possible to review code more quickly than this,
but the quality of the review might suffer.

We have seen evidence of the distinct lack of will to
review code in the open source community. For
example:

The promise of open source is that it enables many
eyes to look at the code, but in reality, that doesn’t
happen.

—Crispin Cowan (Cowan 2002)

Also, do not lose sight of a very simple maxim: the
quality of code review—in other words, the ability to
find real bugs versus finding false positives or missing
bugs—is proportional to the code size under review.
More code to review means you must have even more
knowledgeable and motivated people reviewing the
code.

61

Understanding Security Bugs
Understanding security vulnerabilities is critically
important and is covered in detail in Chapter 5. If your
engineers do not know what constitutes a security bug,
they will find none when reviewing the design of a
component or the code underlying the design. As an
example, unless you know what an HTTP Response
Splitting attack is (Watchfire 2005), you won’t see the
security bug in the following code:
<% @ LANGUAGE=VBSCRIPT CODEPAGE = 1252 %>
<!--#include file="constant.inc"-->
<!--#include file="lib/session.inc"-->
<% SendHeader 0, 1 %>
<!--#include file="lib/getrend.inc"-->
<!--#include file="lib/pageutil.inc"-->
<%
'<!-- Microsoft Outlook Web Access-->
'<!-- Root.asp : Frameset for the Inbox
window -->
'<!-- Copyright (c) Microsoft Corporation
1993-1997. All rights reserved.-->
On Error Resume Next
If Request.QueryString("mode") <> "" Then

Response.Redirect bstrVirtRoot + _
"/inbox/Main_fr.asp?" +

Request.QueryString()
End If

This coding bug in the Microsoft Outlook Web Access
component of Microsoft Exchange Server 5.5 is what
led Microsoft to release a security bulletin, MS04-026

62

(Microsoft 2004). This kind of bug can lead to
numerous security issues.

By the way, the coding bug is in the line that starts
Response.Redirect.

63

Critical Mass
Next, the issue of critical mass: there must be enough
knowledgeable people reviewing enough of the code
often enough. Yes, there might very well be many
people with security expertise working on some of the
larger projects such as Apache and the Linux kernel,
but that’s an incredibly small number of people
compared to the sheer volume of software being
created that needs reviewing.

But let’s assume for a moment that there is a critical
mass of people who understand security bugs and are
prone to audit code for security errors. You would
think that it would be appropriate to change the "many
eyes" mantra to "A critical mass of experienced and
willing eyes makes all bugs shallow," but again, it
misses the point of software engineering processes,
our next topic.

64

"Many Eyeballs" Misses the Point
Altogether
The goal of a good development process that leads to
quality software is to reduce the chance that a
designer, an architect, or a software developer will
insert a bug in the first place. A bug that is not entered
during the development process is a bug that does not
need removing and that does not adversely affect
customers. Make no mistake, there is absolutely a
critical need for code review, but simply "looking for
bugs" does not lead to a sustainable stream of secure
software. Throwing the code "over the wall" for others
to review for security bugs is wasted effort. A goal of
the Security Development Lifecycle (SDL) is to
reduce the chance that someone will enter security
bugs from the outset.

In late 2004, the author of this chapter made a point in
his blog about the number of security bugs in
Microsoft Internet Information Services (IIS) 5 and IIS
6 and Apache 1.3.x and Apache 2.0.x, noting that
because of the SDL, IIS 6 has had substantially fewer
security bugs than IIS 5, but Apache 2.0.x had more
than Apache 1.3.x (Howard 2004). A comment
entered by an open source advocate named "Richard"
(on blog page http://blogs.msdn.com/michael_howard/
archive/2004/10/15/242966.aspx) was, "Apache 2 is
new. It is an immature product and is less secure
because of it."

65

Apache 2.0.35 was the first "General Availability"
release of Apache 2.0.x and was made available April
2002. It may be new relative to Apache 1.3.x, but it
most certainly is not new. The belief that, over time,
open source code quality will improve is a pretty
typical view in the open source community. It may be
true, but it is a naïve viewpoint: customers don’t want
code that will be of good quality in due course; they
want more secure products from the outset.

Finally, most security professionals agree that the
concept of "many eyeballs" leading to secure code is
incorrect. Following are some quotes from
well-known open source security experts.

"Experience shows this simply isn’t true," the research
firm states, calling it "the myth of more eyes," citing
case after case where no one spotted critical flaws in
open source code.

—Network World, citing a Burton Group report (Burton
2005)

Now, I’m not going to throw any of that "many
eyeballs" nonsense at you—much of the code we use
never gets audited.

—Jay Beale, Bastille Linux (Beale 2002)

Unless there’s a great deal of discipline underlying
the development, there’s no difference in the security.
Open source is not inherently more secure.

66

—Peter Neumann, principal scientist, SRI International
(eWeek 2002)

In short, there is no empirical evidence whatsoever
that "many eyes" lead to secure software. There is a
great deal of opinion—but no hard facts—to back up
the claim. In fact, a great deal of evidence exists to
show that the "many eyes" concept does not lead to
secure software. Take the preceding scenario—Apache
2.0 versus Apache 1.3 and IIS 5 versus IIS 6—as an
example. A lack of motivation to review old code
(instead of developing new code) and a lack of
systematic security training for developers and testers
has helped create this reality, as well as a lack of
discipline in the profession to exploit lessons learned
and discovered vulnerabilities.

Finally, numerous security bugs have existed in open
source software for years, such as the following:

▪ 15 years. Sendmail e-mail server
(CVE-2003-0161)

▪ 10 years. MIT’s Kerberos authentication protocol
(CVE-2003-0060)

▪ 7 years. SAMBA file and print
(CVE-2003-0085)

▪ 5 years. MIT’s Kerberos authentication protocols
(CVE-2005-1689)

▪ 5 ½ years. Eric Raymond’s Fetchmail e-mail
server (CVE-2002-0146)

67

Important

Each bug in the preceding list is identified using a
unique value assigned by MITRE Corporation.
Some IDs start with CVE and some with CAN, so
if you can’t find, for example, CVE-2002-0146,
try CAN-2002-0146. A link to each of these bugs
is given at the end of this chapter in the
"References" section.

Admittedly, closed source software security bugs can
linger unseen for years. But it’s not the closed source
developers making the "many eyes" claim.

Again, we want to stress that this is not a slam against
the open source community; "many eyes" is simply a
myth that needs dispelling for the open source
community to move onto producing better, more
secure products. Why? Again, the skills aren’t there,
the motivation isn’t there, and there is little sign of
process improvement. Until the development
processes improve in the open source community, no
major decrease in the staggering number of security
bugs will occur. And that’s simply not good for
customers.

68

Proprietary Software
Development Methods
Each commercial software company has its own
development method; some follow a classic waterfall
model (Wikipedia 2002a), some use a spiral model
(Wikipedia 2002b), some use the Capability Maturity
Model, now referred to as Capability Maturity Model
Integration (CMMI) (Carnegie Mellon 2000), some
use Team Software Process (TSP) and the Personal
Software process (PSP) (Carnegie Mellon 2003), and
others use Agile methods. There is no evidence
whatsoever that any of these methods create more
secure software than another internal development
method, judging by the number of security bugs fixed
by commercial software companies such as IBM,
Oracle, Sun, and Symantec each year that require
customers to apply patches or change configurations.
In fact, many of these software development methods
make no mention of the word "security" in their
documentation. Some don’t even mention the word
"quality" very often, either.

CMMI, TSP, and PSP
The key difference between the SDL and CMMI/TSP/
PSP processes is that SDL focuses solely on security
and privacy, and CMMI/TSP/PSP is primarily
concerned with improving the quality and consistency
of development processes in general—with no specific

69

provisions or accommodations for security. Although
certainly a worthy goal, this implicitly adopts the logic
of "if the bar is raised on quality overall, the bar is
raised on security quality accordingly." Although this
may or may not be true, we don’t feel that sufficient
commercial development case study evidence exists to
confirm or refute this either way. Our collective
experiences from SDL are that adopting processes and
tools specifically focused on demonstrably reducing
security and privacy vulnerabilities have provided
consistent examples of case study evidence testifying
to improved security quality. Although we feel the
verdict is still out on how effective CMMI/TSP/PSP
are in improving security quality in software as
compared to SDL, we’d assert that SDL is, at a
minimum, a more optimized approach at improving
security quality.

There is information about TSP and security (Over
2002), but it lacks specifics and offers no hard data
showing software is more secure because of TSP.

70

Agile Development Methods
Agile development methods (Wikipedia 2006) such as
Extreme Programming attempt to reduce the overall
risk of a software development project by building
software in very rapid iterations, often called
timeboxes or sprints. These short turnarounds
potentially allow for better customer feedback and
interaction, time management, and schedule
prediction.

The Microsoft Solutions Framework (MSF) for Agile
Software Development (MSF 2006) adds some
security checklists and threat modeling, and the latest
version of Extreme Programming adds some security
best practice, but it’s very shallow and weak, focusing
only on some programming practices for security.
Having a list of security best practices and secure
coding checklists is certainly better than nothing and
will reduce the chance that some security bugs enter
the design and the code, but it’s not deep enough and
it will catch only shallow security bugs. With all that
said, there’s no reason why SDL cannot be adopted by
Agile methods, and we’ll discuss this in Chapter 18.

71

Common Criteria
The Common Criteria (CC), also referred to as ISO/
IEC 15408 (Common Criteria 2006), is an
international standard for computer security to assess
the presence and assurance of security features. Its
goal is to allow users to define their security
requirements, have developers specify the security
attributes of their products, and, finally, allow
third-party evaluators to determine whether the
products meet the stated claims. Common Criteria
does not define standards for quality of design or code
quality.

CC defines sets of assurance requirements, called
Evaluation Assurance Levels (EALs), numbered from
one (EAL1) to seven (EAL7). Higher numbers mean
more evaluation effort, time, and money. The CC, at
EAL4 and below, does not define standards for code
or design quality. EAL5 and EAL6 do specify
standards for design but not for code. The highest
assurance level, EAL7, specifies both. A higher EAL
does not necessarily mean that a product is more
secure—it just means that the product under
evaluation (called the Target of Evaluation, or TOE)
has been more extensively analyzed and evaluated.

72

Important

A higher evaluation level, for example, EAL4
versus EAL3, does not necessarily imply "more
secure."

Many people mistakenly associate CC with quality
and therefore assume the software is resilient to attack.
This is not true. Indeed, many products with CC
certifications have had numerous successful attacks,
including the following:

▪ Microsoft Windows 2000 (EAL4) (Microsoft
2000)

▪ Red Hat Enterprise Linux 4 (EAL3, in evaluation
for EAL4) (Red Hat 2005)

▪ Oracle9i Release 9.2.0.1.0 (EAL4) (Oracle 2005)

▪ Trend Micro InterScan VirusWall (EAL4)

What CC does provide is evidence that
security-related features perform as expected. For
example, if a product provides an access control
mechanism to objects under its control, a CC
evaluation would provide assurance that the monitor
satisfies the documented claims describing the
protections to the protected objects. The monitor
might include some implementation security bugs,

73

however, that could lead to a compromised system. No
goal within CC ensures that the monitor is free of all
implementation security bugs. And that’s a problem
because code quality does matter when it comes to the
security of a system.

Important

Design specifications miss important security
details that appear only in code.

74

Summary
Present software development methods lack in-depth
security awareness, discipline, best practice, and rigor,
and this is evidenced by the sheer quantity of security
patches issued each year by all software vendors. To
remedy this, the industry must change its present
engineering methods to build more secure software.

75

References

76

Bibliography
[biblio02_01] (Brooks 1995) Brooks,FrederickP. The
Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Reading, MA:
Addison-Wesley Publishing Co., 1995.

[biblio02_02] (Raymond 1997) Raymond,EricS.
"The Cathedral and the Bazaar,"
http://www.catb.org/~esr/writings/cathedral-bazaar/.
February 2006.

[biblio02_03] (Cowan 2002) Cowan,Crsipin, quoted
in "Group to boost code review for Linux,"
http://news.zdnet.com/2100-3513_22-830255.html.
February 2002.

[biblio02_04] (Watchfire 2005) Watchfire
Whitepapers. "HTTP Response Splitting, Web
Cache Poisoning Attacks, and Related
Topics," http://www.watchfire.com/news/
whitepapers.aspx.

[biblio02_05] (Microsoft 2004) "Vulnerability in
Exchange Server 5.5 Outlook Web Access
Could Allow Cross-Site Scripting and
Spoofing Attacks (MS04-026),"
http://www.microsoft.com/technet/security/bulletin/
ms04-026.mspx. August 2004.

[biblio02_06] (Howard 2004) Howard,Michael.
"Follow-up on IIS 6 and Apache Security,"

77

http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.watchfire.com/news/whitepapers.aspx
http://www.watchfire.com/news/whitepapers.aspx
http://www.microsoft.com/technet/security/bulletin/ms04-026.mspx
http://www.microsoft.com/technet/security/bulletin/ms04-026.mspx

http://blogs.msdn.com/michael_howard/archive/2004/
10/18/244181.aspx. October 2004.

[biblio02_07] (Burton 2005) Messmer,Ellen. "Open
source vs. Windows: Security Debate Rages,"
http://www.networkworld.com/supp/2005/opensource/
070405-open-source-security.html. July 2005.

[biblio02_08] (Beale 2002) Gross,Grant. "Bastille’s
Beale: How to Avoid Security Problems,"
http://newsforge.com/article.pl?sid=02/10/25/
1728232. November 2002.

[biblio02_09] (eWeek 2002) Fisher,Dennis.
"Open-Source Security Comes Under Fire,"
http://www.eweek.com/article2/
0,1759,1656652,00.asp. November 2002.

[biblio02_10] (CVE-2003-0161) Common
Vulnerabilities and Exposures. "Sendmail
prescan() buffer overrun," http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2003-0161.

[biblio02_11] (CVE-2003-0060) Common
Vulnerabilities and Exposures. "MIT Kerberos v5
format-string bug," http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2003-0060.

[biblio02_12] (CVE-2003-0085) Common
Vulnerabilities and Exposures. "Buffer overrun in
SAMBA," http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2003-0085.

78

http://www.networkworld.com/supp/2005/opensource/070405-open-source-security.html
http://www.networkworld.com/supp/2005/opensource/070405-open-source-security.html
http://www.eweek.com/article2/0,1759,1656652,00.asp
http://www.eweek.com/article2/0,1759,1656652,00.asp

[biblio02_13] (CVE-2005-1689) Common
Vulnerabilities and Exposures. "Double free in MIT
Kerberos v5," http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2005-1689.

[biblio02_14] (CVE-2002-0146) Common
Vulnerabilities and Exposures. "Fetchmail buffer
overrun," http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2002-0146.

[biblio02_15] (Wikipedia 2002a) "Waterfall
model," http://en.wikipedia.org/wiki/
Waterfall_model.

[biblio02_16] (Wikipedia 2002b) "Spiral model,"
http://en.wikipedia.org/wiki/Spiral_model.

[biblio02_17] (Carnegie Mellon 2000) Carnegie
Mellon Software Engineering Institute. Capability
Maturity Model Integration, http://www.sei.cmu.edu/
cmmi/.

[biblio02_18] (Carnegie Mellon 2003) Carnegie
Mellon Software Engineering Institute. "The Team
Software Process (TSP) and the Personal
Software Process (PSP)," http://www.sei.cmu.edu/
tsp/.

[biblio02_19] (Over 2002) Over,JamesW. "Team
Software ProcessSM (TSPSM) for Secure
Systems Development," http://www.sei.cmu.edu/
tsp/tsp-secure-presentation/.

79

http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/tsp-secure-presentation/
http://www.sei.cmu.edu/tsp/tsp-secure-presentation/

[biblio02_20] (Wikipedia 2006) "Agile software
development," http://en.wikipedia.org/wiki/
Agile_software_development.

[biblio02_21] (MSF 2006) Microsoft Corporation.
"MSF for Agile Software Development,"
http://lab.msdn.microsoft.com/teamsystem/Workshop/
msfagile/default.aspx. March 2006.

[biblio02_22] (Common Criteria 2006) Common
Criteria Project. Common Criteria portal,
http://www.commoncriteriaportal.org.

[biblio02_23] (Microsoft 2000) "The New
Common Criteria Security Evaluation Scheme
and the Windows 2000 Evaluation,"
http://www.microsoft.com/technet/security/prodtech/
windows2000/secureev.mspx. TechNet, 2000.

[biblio02_24] (Red Hat 2005) "Red Hat Enterprise
Linux 4 in Evaluation for Common Criteria
Controlled Access Protection Profile
Compliance (CAPP/EAL4+),"
http://www.redhat.com/solutions/industries/
government/commoncriteria/.

[biblio02_25] (Oracle 2005) Oracle Common Criteria
press release, http://www.oracle.com/corporate/press/
2005_feb/oid%20evaluation_0.html. February 2005.

80

http://www.commoncriteriaportal.org
http://www.microsoft.com/technet/security/prodtech/windows2000/secureev.mspx
http://www.microsoft.com/technet/security/prodtech/windows2000/secureev.mspx
http://www.redhat.com/solutions/industries/government/commoncriteria/
http://www.redhat.com/solutions/industries/government/commoncriteria/
http://www.oracle.com/corporate/press/2005_feb/oid evaluation_0.html
http://www.oracle.com/corporate/press/2005_feb/oid evaluation_0.html

Chapter 3. A Short History of
the SDL at Microsoft
In this chapter:

First Steps

New Threats, New Responses

Windows 2000 and the Secure Windows Initiative

Seeking Scalability: Through Windows XP

Security Pushes and Final Security Reviews

Formalizing the Security Development Lifecycle

A Continuing Challenge

This chapter describes the path that Microsoft
followed in developing the Security Development
Lifecycle (SDL) and offers a brief overview of the
recent history and evolution of computer security
practices. This history also makes clear why some
current approaches to building more secure software
don’t work or don’t work well enough to respond to
evolving threats to software security.

81

First Steps
Microsoft designed MS-DOS, Microsoft Windows
3.1, and Windows 95 as single-user operating systems
whose user would own and control all of the resources
on the computer. Such a system doesn’t require
internal security controls that can protect one user
from another because there is only one user on a
system, and he or she controls everything. Windows
95 was designed to connect to corporate networks that
provided shared file and printer infrastructures and to
connect to the Internet as a client system, but the
primary focus of security efforts was the
browser—and even there, the understanding of
security needs was much different from what it is
today.

So Microsoft Windows NT 3.1 was the first Microsoft
product for which operating system security was a
significant design consideration. The core team that
designed Windows NT largely came from Digital
Equipment, where the team members had gained years
of experience and had successfully developed large
time-sharing systems used in major enterprises. They
knew that any server or multiuser operating system
would have to address security threats and protect one
user from another, one application from another, and
one process from another. In fact, many members of
the Windows NT team had previously worked at
Digital Equipment on a system that was targeted at a
relatively high "B2" security evaluation by the United

82

States government; they initially planned to seek B2
evaluation for Windows NT and reflected many of the
security assurance requirements for B2 evaluation in
the initial design of Windows NT. See the following
sidebar for more information.

Security Evaluation

In the early 1980s, the United States government’s
National Security Agency (NSA) began the
development of a set of evaluation criteria
intended to characterize the security features and
security assurance—or resistance to attack—of
operating system software. These criteria—known
as the Trusted Computer System Evaluation
Criteria (TCSEC) or Orange Book after the color
of its cover (DOD 1985)—guided the efforts of
vendor operating system development teams from
the early 1980s to the late 1990s. Most commercial
operating systems of the period achieved "Class
C2" evaluations. The higher levels of
evaluation—Classes B2, B3, and A1—required
high levels of modularity and structure at the
design level, extensive documentation, and the
implementation of an access control model that
met the needs of defense and national security
users. One of this book’s authors (Lipner) was
deeply involved during the early 1980s in the
review of the NSA’s drafts of the TCSEC and
subsequently led a project at Digital Equipment to

83

develop a system targeted at TCSEC Class A1
(Karger 1991).

By the late 1980s, other governments, including
those of Canada and several European countries,
had begun the development of their own security
evaluation criteria applicable to operating system
software and to other classes of products. Most of
those countries’ evaluation processes converged on
the European Information Technology Security
Evaluation Criteria, or ITSEC (ITSEC 1991). The
structure of the ITSEC differed from that of the
TCSEC in that security feature requirements and
assurance requirements were treated separately.

By the mid-1990s, it had become obvious to
vendors that neither commercial nor government
customers were willing to make buying decisions
based on compliance with the higher levels of
evaluation specified by the TCSEC or ITSEC, and
commercial product evaluations were thus limited
to TCSEC Class C2 and the (roughly) equivalent
ITSEC Class E3. In an effort to offer a wider
market for evaluated products and to improve
efficiency, the United States government and the
European supporters of the ITSEC agreed in the
late 1990s to support the Common Criteria for
Information Technology Security Evaluation or,
simply, the Common Criteria (Common Criteria
2005). The Common Criteria have received formal
international recognition as ISO Standard 15408.

84

Microsoft products have undergone numerous
evaluations under a variety of evaluation regimes.
Because it became evident across the industry that
customers did not require and would not buy
systems that incorporated the features required by
TCSEC Class B2, Microsoft submitted Windows
NT Versions 3.51 and 4.0 for evaluation at TCSEC
Class C2 and at ITSEC Class E3. Microsoft SQL
Server 2000 was also evaluated at Class C2 under
the "database interpretation" of the TCSEC (NCSC
2000; ITSEC 1999). Recent Microsoft products,
including Windows 2000, Windows XP, Microsoft
Windows Server 2003, ISA Server 2004, and
Exchange Server 2003, have completed evaluation
at Class EAL4 of the Common Criteria, which is
the highest evaluation level achieved by
high-volume commercial products (Common
Criteria 2006). Other Microsoft products are
undergoing evaluation as this book is being
written.

Although the basic design of Windows NT was
structured similarly to a multiuser time-sharing
system, by the time the system was widely deployed, it
was used as a desktop client in applications that
required a more robust operating system than
Windows 95, and it was used as a file, print, or
Internet server (HTTP, FTP, DNS, DHCP, etc.)
system. Windows NT was designed with a high degree
of modularity and consideration for security, and the

85

resulting system was relatively secure compared to
other multiuser systems of its day. However, as server
applications gained in popularity, Windows NT
quickly came face to face with the evolving threat
environment of the Internet.

86

New Threats, New Responses
The mid-1990s saw the explosive growth of the
Internet and, with it, the evolution of a new cottage
industry specializing in discovering security
vulnerabilities. Internet infrastructure components for
UNIX, including Sendmail, BIND, and X Windows,
were early targets of this industry, and Web browsers
and Web servers did not lag far behind as targets.
Discoveries of vulnerabilities in Netscape and Internet
Explorer received wide publicity (CERT 1997). In this
early stage of research into the vulnerability of
Internet software, the vulnerability finders, for the
most part, confined themselves to demonstrations
aimed at building credibility for their security product
companies or consulting practices, although there were
instances of hostile attacks as early as the dawn of the
commercial Internet (CERT 1994). Some security
researchers chose to release "exploit code" that could
be used to make use of the vulnerabilities, and in some
cases, "script kiddies" took advantage of the exploit
code to attack unpatched systems.

Because it became evident that discovery and
disclosure of software vulnerabilities would be a
continuing feature of the Internet-connected world,
Microsoft took multiple steps to deal with the new
realities. Prior to 1998, Microsoft had taken an ad hoc
approach to dealing with discoveries of software
vulnerabilities. Individual product teams handled
communications with vulnerability finders. Product

87

teams released fixes as security updates through their
support organizations and on Microsoft’s Web site,
and the Windows marketing organization handled
questions from the press concerning the discovery of
new vulnerabilities in Windows.

In mid-1998, Microsoft created its Security Response
Team to centralize the process of dealing with
software vulnerabilities. Early team members included
Jason Garms, Scott Culp, and coauthor of this book
Steve Lipner. Security researchers were encouraged to
report to a single well-known e-mail address
(secure@microsoft.com), security updates were made
public at a single Web site (www.microsoft.com/
security), and the team handled press response to
security issues associated with any Microsoft product.
The new team’s charter was to improve
communications and relations with security
researchers and communications with customers. The
Security Response Team—predecessor of today’s
Microsoft Security Response Center (MSRC)—was
widely acknowledged to have made a significant
contribution to these objectives.

In parallel with the launch of the Security Response
Team, Microsoft formed an internal Security Task
Force to examine the underlying causes of
vulnerabilities and to plot a course that could help to
reduce vulnerabilities over time. That task force’s set
of recommendations forms the earliest precursor of the
SDL. Viewed from a perspective seven years later, the

88

http://www.microsoft.com/security
http://www.microsoft.com/security

task force’s report appears prescient. Some of its key
components included these recommendations:

▪ Focus on the need for management commitment

▪ Focus on the need for engineer awareness and
training

▪ Use processes that are the precursors of today’s
threat modeling

▪ Apply tools and code review to detect and
remove common coding errors that lead to
potential security vulnerabilities

▪ Emphasize the importance of security testing,
including "thinking like a hacker"

▪ Focus on the need for a post-release security
response process

▪ Suggest that product groups organize for better
security, including

▪ Establishing a dedicated security team
within the product group

▪ Defining a consistent "security bug bar" to
help evaluate the criticality of potential
security vulnerabilities

▪ Tracking security bugs found and fixed and
internalizing lessons learned from new kinds
of security bugs

89

The Security Task Force pointed the way to the SDL,
but it could not know and thus did not prescribe the
level of resources or effort that would be required.
Discovering how the process should work, identifying
and committing the necessary resources, and coming
to terms with the continuing evolution of security and
threats required the next five years and launched a
process that will never be static or "done."

90

Windows 2000 and the Secure
Windows Initiative
The Security Task Force report coincided with the
final stage of fixing bugs before the release of
Windows 2000. Windows 2000 incorporated a great
many new security features, including the use of
Kerberos as the primary authentication protocol for
Windows domains, integration of smartcards for user
authentication, integration of a public key
infrastructure and certificate server, integration of the
IETF IPSEC protocol for network authorization and
encryption, and the introduction of an Encrypting File
System (EFS) to protect data stored on hard drives.
However, it was clear that the value of the new
security features could be put in jeopardy by a
growing number of vulnerability reports. The
management of the Microsoft Windows division took
three key steps to implement the recommendations of
the report:

▪ The deployment of an automated static analysis
tool (PREfix) that could detect some classes of
security vulnerabilities in source code, including
some buffer overruns

▪ The deployment of a dedicated security
penetration test team to find potential
vulnerabilities in the Windows 2000 code base

91

▪ The creation of a dedicated security program
management team—the Secure Windows
Initiative (SWI) team—that was chartered to
conduct design and code reviews and to work
with component development teams to improve
design and implementation before the product
shipped

▪ Treatment of security vulnerabilities as a
"ship-stopper" issue

PREfix was Microsoft’s first static analysis tool. The
PREfix-related technology was acquired when
Microsoft acquired a startup company named Intrinsa.
Many of the Intrinsa personnel joined the Programmer
Productivity Research Center at Microsoft Research.
In the late 1990s, PREfix could detect a few classes of
stack-based buffer overruns by tracing the flow of
input from an untrusted source to a stack buffer.
Although the PREfix technology that was applied to
Windows 2000 made a positive contribution and led to
the removal of some classes of security vulnerabilities,
it took several years of additional development—and
additional discovery of new classes of vulnerabilities
in a partnership between Microsoft Research and the
SWI team—to evolve the tool into a highly effective
one for writing more secure code. Nonetheless, the
Windows 2000 experience introduced Windows
developers to the notion that their code would be
subject to automated analysis and that they’d be
presented with automatically filed "security bugs"
requiring analysis and correction.

92

The penetration test team was assembled of
experienced Microsoft developers and testers who had
shown an interest in security and talent for finding
security vulnerabilities. The team reviewed the code of
Windows components that they believed were
security-critical or highly exposed to attack, found
potential vulnerabilities, and filed bug reports to
ensure that the bugs were fixed. The team was initially
a small one—fewer than 10 engineers—and they
developed their approaches to finding vulnerabilities
as they went, based on their own experience with the
security of older systems and on the lessons learned
from vulnerability reports to the Security Response
Team. The team established a good track record in the
sense that many vulnerabilities that were externally
reported against Windows NT had already been found
by the penetration team, fixed in the evolving
Windows 2000 code base, and scheduled for
correction in an upcoming Windows NT service pack.

The initial SWI team was chartered to work with
product teams by reviewing component designs and
code and making recommendations (or filing bugs)
that would lead to improved security. Initially, this
team was even smaller than the penetration team
(fewer than five members), and it was made up of
Microsoft engineers with expertise in software
security design and analysis as demonstrated by their
accomplishments and contributions while working in
Microsoft product development groups. The team’s
operational concept was to move from component
team to component team, meeting with developers and

93

program managers, making recommendations, and
filing bugs. The limitation of this incarnation of the
SWI team is obvious in retrospect—the team was too
small to review all the Windows components.

The determination by Windows division management
to treat security as a ship-stopper issue constituted a
visible management commitment to security.
Although the processes and resources applied during
the development of Windows 2000 were a significant
first step in improving the security of Microsoft
software, the management commitment sent a message
to middle managers and individual contributors that
Microsoft’s focus on security was changing and that
the company was committed to improving it.

94

Seeking Scalability: Through
Windows XP
After the release of Windows 2000, the penetration
team and the SWI team continued to focus on the
security of the Windows code base, turning their
attention to Windows XP, the next planned release.
Windows 2000 was shipping to customers, and
vulnerability reports continued to arrive at a growing
pace as security researchers turned their attention to
the new product version. It was evident that the work
done before Windows 2000 shipped, although useful,
did not have sufficient impact on the product’s
security.

The SWI team of 2000–2001, in particular, revisited
its operational concept and recognized that it was
simply not going to be possible for a small team to
conduct sufficient design and code reviews to
materially improve the security of the next Windows
release. After considering alternatives, the team made
a fundamental change: SWI engineers would still be
available to consult on specific security design and
coding issues, but their focus would be on helping the
engineers in product groups build more secure code.
Instead of fishing for security vulnerabilities on behalf
of the product groups, the SWI team would teach them
how to fish. This change coincided with a broadening
of the SWI charter to cover all "major" or enterprise

95

Micrsosoft products, and it seemed likely to constitute
a "scalable" approach to improving product security.

To implement their new approach, the SWI team
focused on component team–wide "security days" or
"bugbashes." Typically, such a day would begin with
two to four hours of security training, followed by the
component team spending the remainder of the day or
more reviewing code and conducting penetration or
other security testing. The team would file bugs
against vulnerabilities that had to be eliminated and
areas where the component design should be made
more resistant to attack. Often, the SWI team
presented prizes for the "best security bug" filed
during the day.

The Windows penetration team continued its code
reviews, finding additional vulnerabilities and other
issues and filing bugs to ensure that they were fixed.
More significantly, Microsoft’s tool developers (the
Programmer Productivity Research Center [PPRC])
continued to enhance PREfix to improve its ability to
detect buffer overrun vulnerabilities and also
developed a new tool known as PREfast, which is very
effective at detecting buffer overruns in individual
modules.

Note

96

The major difference between PREfix and
PREfast is that PREfix can find errors that span
multiple programs or components, whereas
PREfast is especially effective at finding errors in
a single program. PREfix is maintained and
operated by a central team that scans an entire
product code base periodically. PREfast is
executed by individual developers before they
check in their code. PREfast has been released as
the /Analyze feature of Microsoft Visual Studio
2005.

The Windows development organization continued its
commitment to addressing security vulnerabilities
when found, as evidenced by the fact that the
Windows XP release was delayed to address a security
bug (in the handling of encryption keys) discovered
late in the development process.

97

Security Pushes and Final
Security Reviews
The second half of 2001 was not a good time for
Microsoft’s reputation with respect to security issues.
Mid-July saw the release of the Code Red Internet
worm, which exploited a vulnerability in Windows
2000 systems running an Index Server Internet Server
Application Programming Interface (ISAPI) filter
within the Internet Information Services (IIS) 5 Web
server component (CERT 2001a). In September, the
Nimda worm exploited another vulnerability in IIS as
well as a vulnerability in the Internet Explorer Web
browser component (CERT 2001b). Although the
vulnerabilities exploited by Code Red and Nimda had
been addressed by security updates released before the
worms were launched, the worms affected significant
numbers of customer systems. Finally, late in the year,
news of a buffer overrun vulnerability in the Universal
Plug and Play (UPnP) component of Windows XP
made headlines, although the vulnerability itself was
never successfully exploited (CERT 2001c).

Even as the worms prowled the Internet and
researchers continued to discover Windows
vulnerabilities, Microsoft’s top management was
working on plans to make fundamental changes in the
ways that Microsoft addressed security and privacy.
The Trustworthy Computing (TwC) initiative was
planned as a way of mobilizing Microsoft’s staff and

98

markedly improving the quality of Microsoft software.
Trustworthy Computing was planned during late 2001
and launched with a January 2002 e-mail message
from Bill Gates to all Microsoft employees (Microsoft
2002).

While Microsoft executives were working on the plans
for the broad TwC effort, members of the SWI team
were working with product groups to devise
immediate steps that would improve the security of
product versions nearing release. Microsoft’s
Developer Division was nearing release of the initial
version of the Microsoft .NET Framework common
language runtime (CLR), and in an effort to make the
release as secure as possible, division management
decided to delay the release and turn all of the
engineers in the division to the task of reviewing code
for security vulnerabilities and conducting penetration
and other security tests. This effort—the first case of
an effort that would come to be known as a security
push—lasted for about six weeks and ended when the
rate of discovery of security vulnerabilities dropped so
much that further searching was unproductive. The
outcome of this work was that a number of security
bugs were fixed and extra defensive methods were
added to the CLR and Microsoft ASP.NET to
compensate for any missed security bugs (Paul and
Evans 2006). The introduction of extra defensive
methods led the SWI team to formalize the notion of
measuring attack surface (Attack Surface Analysis
[ASA]) and to advocate Attack Surface Reduction
(ASR) as a way of compensating for the fact that you

99

can never get the code one hundred percent correct
(unless the code is trivially small in size). We’ll
discuss ASR in more detail in Chapter 7.

Given the experience of the .NET Framework security
push, the SWI team recommended that the
management of the Windows division proceed with a
similar security push focused on what was known at
the time as Windows .NET Server and later would be
renamed Windows Server 2003. At the time, Windows
Server 2003 was in beta test and relatively close to its
planned release date. This security push posed
significant challenges: the Windows code base was
roughly ten times larger than that of the .NET
Framework, and it included legacy code (unlike the
.NET Framework, which was a version 1 product) and
associated constraints to maintain compatibility with
former Windows versions. The Windows division also
employed an engineering staff more than five times as
large as that of the Developer division, so even
logistics for the security push posed a major challenge.

Despite the challenges, and spurred on by the TwC
commitment, the Windows division proceeded with its
security push. The push began with training for more
than 8,000 Windows division engineers (in late
January 2002). Two members of the SWI team (author
Michael Howard and his colleague David LeBlanc)
had recently completed the first edition of Writing
Secure Code in an effort to make lessons learned by
the SWI team widely available to engineers inside and
outside of Microsoft, and copies of Writing Secure

100

Code were issued to all engineers who attended the
security push training (Howard and LeBlanc 2002).
Once the training was completed, the engineering staff
turned to a series of activities planned by the SWI
team and the Windows program management
organization:

▪ Developing threat models to identify components
and interfaces that might be vulnerable to attack.

▪ Devising design changes to improve default
security and reduce the product’s attack surface.

▪ Performing special runs of PREfix, PREfast, and
other automated tools to detect potential
vulnerabilities. Because PREfix and PREfast are
extensible, the security push included iterative
additions of code to these tools to enable them to
detect new classes of potential vulnerabilities.

▪ Reviewing code to find and remove both
identified vulnerabilities and dangerous coding
constructs that might lead to vulnerabilities.

▪ Bad-parameter checking and penetration testing
to identify vulnerabilities and areas where the
code might be unreliable or unstable.

The Windows security push was initially planned to
take place through February 2002. As the scope of the
work involved became clear, the duration of the push
was extended through the end of March 2002. At the
end of the push, many security bugs had been filed and
many design changes were specified, including those

101

affecting attack surface. In the following months,
Windows division engineers went on to fix the bugs
and code and test the design changes.

By late 2002, Windows Server 2003 was largely ready
to ship. The product was in the Release Candidate
stage, which involves final testing by customers and
the Microsoft IT organization. Around that time, the
Microsoft executive responsible for Windows Server
2003 development asked members of the SWI team
how they felt about the outcome of the security push
and the other work that had been done on the new
release. To answer this seemingly simple question, the
SWI team launched a series of actitivies, including a
review of bugs that had been filed as security bugs, an
evaluation of the server release in the context of
externally discovered vulnerabilities affecting prior
Windows versions and competing products, and
penetration tests by SWI team members and outside
contractors.

The activities undertaken to assess the security of
Windows Server 2003 led the SWI team to the
conclusion that the work of the security push had
largely been successful, and that Windows Server
2003 was on track to set a new standard for Microsoft
operating system security. However, in reviewing the
security of the Windows Server 2003 code base, the
team discovered a few new classes of vulnerabilities
(which were fixed before the software was released)
and found that there were a few areas of the system
where additional work would produce additional

102

security benefits. They also determined that the
browser component of Windows (Internet Explorer)
needed significant security work before its security
would be comparable to the rest of Windows Server
2003. Because the product was a server release,
browsing arbitrary Web sites was not a primary usage
scenario, so the SWI team and the product team
worked together to "lock down" the browser, blocking
most scenarios in which vulnerabilities might occur by
default. (More fundamental changes to improve the
security of Internet Explorer without requiring
configuration lockdown were undertaken for Windows
XP Service Pack 2 and Windows Server 2003 Service
Pack 1, and even more significant changes aimed at
further improving security are reflected in Internet
Explorer 7, the browser component of the forthcoming
Windows Vista.)

In addition to the browser changes, the Windows
development team changed to a new compiler that
incorporated enhanced run-time detection of attempts
to exploit buffer overruns. This was the second
security-related compiler change for Windows Server
2003—the first was made at the time of the Windows
security push. Windows Server 2003 was launched in
April 2003 and has had a much better security track
record than its predecessors or competing products:
roughly a factor of two in reduction of security
vulnerabilities rated "critical" or "important" by
MSRC.

103

The discussions in this section have focused on the
Windows security push and the activities taken to
improve the security of Windows Server 2003. The
initiation of Trustworthy Computing in early 2002, in
fact, mobilized product groups across Microsoft and
led to security pushes—and, in some cases, prerelease
security reviews—for a number of products or product
service packs. Key among these products were
Microsoft Office 2003, SQL Server 2000 Service Pack
3, and Exchange 2000 Server Service Pack 3. In every
case, the result of these efforts was improved security.
In some cases, the improvements were especially
dramatic. For example, Microsoft issued 16 security
bulletins addressing vulnerabilities in SQL Server
2000 from its initial release in late 1999 through the
release of Service Pack 3 in January 2003. In the
subsequent three years, through March 2006,
Microsoft issued only three security bulletins related
to SQL Server 2000.

Through most of 2003, the SWI team continued to
work with product groups to provide training, help
organize security pushes, and conduct pre-ship
reviews—originally referred to as "security audits" but
now called Final Security Reviews (FSRs) to avoid
confusion with financial or operational audits—on
software that was close to release. These efforts were
effective, and the products shipped during this period
showed reduced vulnerability rates, but the process
that the SWI team followed was still ad hoc. The team
was guided by documents that were produced
(especially by Michael Howard) at the end of the

104

Windows Server 2003 security push, and it was guided
by an "oral tradition" of effective practices and issues
to watch out for. It was clear that the process was
effective, but it was less clear what the process itself
was!

105

Formalizing the Security
Development Lifecycle
In late 2003 and early 2004, members of the SWI team
held a series of meetings with senior managers across
Microsoft’s product development organizations. The
focus of these meetings was to review the results
achieved since the first security pushes and to revisit
the requirements that would have to be met to put in
place a consistent and effective security engineering
process. These meetings culminated in a decision at
high levels of the management at Microsoft to replace
the ad hoc process of training, security pushes, and
FSRs with a mandate declaring that essentially all
Microsoft products must meet the requirements of a
formally defined Security Development Lifecycle. The
SDL mandate applies to any software that meets these
criteria:

▪ The software is regularly used in an enterprise,
business, government agency, or other
organization.

▪ The software is regularly used to process personal
or sensitive information.

▪ The software is regularly used to connect to the
Internet. (This requirement is not met by software
that interacts with the Internet only to update its
code or databases by connecting to a
Microsoft-operated Internet server.)

106

The formal definition of the SDL—which has evolved
into the process described in Part II of this
book—proceeded in parallel with the series of
meetings that established the SDL mandate and
informed senior management across Microsoft of the
existence of the mandate and its implications for
product groups. The formal version of the SDL was
designated as SDL Version 2.0 in recognition of the
fact that many product versions had undergone an
earlier (and less formal) SDL process during the era of
security pushes and the first FSRs.

More Info

Part II of this book, describes the SDL stage by
stage—from "Chapter 5" through "Chapter 17."

The transition to SDL Version 2.0 was completed by 1
July 2004. By that time, well over half of Microsoft’s
engineering population had completed the new
security training mandated by SDL, and the formal
requirements for SDL compliance were posted on an
internal Web site. The staffing of the SWI team grew
significantly between January and June of 2004 to
provide the level of effort needed to

▪ Conduct security training.

107

▪ Develop and update the definition of the SDL
itself.

▪ Develop and support tools the use of which was
mandated by the SDL.

▪ Provide advice and consultation on the SDL to
product teams.

▪ Conduct Final Security Reviews before product
release.

The SWI team has continued to grow since July 2004
as the process has evolved and the requirements of
implementing it have become clearer. The SWI team
updates the SDL itself at six-month intervals. SDL
Version 2.1 went into effect in January 2005, and
Version 2.2 became effective in July 2005. SDL
Version 3.0, a major revision that incorporated privacy
requirements for Microsoft products, went into effect
in January 2006.

108

A Continuing Challenge
This chapter has summarized the history of the SDL at
Microsoft from earliest attempts to improve software
security to a formally defined process that is supported
by a relatively large staff and subject to regular
updates. The reference to updates might prompt the
reader to ask, "When will you be done?" Neither of the
authors believes that the process of building secure
software will ever be "done." That’s why the SDL
process includes security responses. See Chapter 14,
and Chapter 16.

We expect the discovery of new ways to attack
software—and new classes of vulnerabilities—to go
on forever. Security researchers will continue to seek
new classes of vulnerabilities at the design and
implementation levels that are not addressed by
current security techniques. People who try to build
more secure software will continue their efforts by
finding new ways to make software more resistant to
attack and by developing tools and techniques that
respond to new classes of attack when they are
discovered. Although the people working on more
secure software will make the security researchers’
and attackers’ jobs harder and will reduce the set of
products and features that can be attacked, the
combination of new classes of products and new
classes of vulnerabilities means that the problem of
making software secure will never go away.

109

We know that applying the techniques of the SDL can
make the attacker’s job harder—the vulnerability
statistics for software versions that were developed
with the SDL process (and its immediate predecessors)
show that. But better is not the same as perfect. We
also know that new discoveries of classes of
vulnerabilities will require new techniques and tools.
That’s why we continue to update the SDL, and
security response is an integral part of the process.
We’ve written this book to give other development
organizations a framework for making their software
more resistant to attack and for organizing their own
process to respond to the continuing challenge of
software security.

110

References

111

Bibliography
[biblio03_01] (DOD 1985) Department of Defense
Standard. Department of Defense Trusted Computer
System Evaluation Criteria, (DOD 5200.28-STD,
Supercedes CSC-STD-001-83, dtd 15 Aug 83),
http://www.radium.ncsc.mil/tpep/library/rainbow/
5200.28-STD.html. 26 December 1985.

[biblio03_02] (Karger 1991) Karger,P.A., M.E.Zurko,
D.W.Bonin, A.H.Mason, and C.E.Kahn. "A
Retrospective on the VAX VMM Security
Kernel," Transactions on Software Engineering,
17(11):1147–1165. November 1991.

[biblio03_03] (ITSEC 1991) Commission of the
European Communities. Information Technology
Security Evaluation Criteria, Provisional Harmonised
Criteria, Version 1.2, http://www.oc.ccn.cni.es/pdf/
ITSEC.pdf. 28 June 1991.

[biblio03_04] (Common Criteria 2005) Common
Criteria Project. Common Criteria for Information
Technology Security Evaluation, Version 2.3,
http://www.commoncriteriaportal.org/public/
developer/index.php?menu=2. August 2005.

[biblio03_05] (NCSC 2000) National Computer
Security Center. Trusted Product Evaluation Program,
Evaluated Products List by Vendor,
http://www.radium.ncsc.mil/tpep/epl/
epl-by-vendor.html#Microsoft. August 2000.

112

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.oc.ccn.cni.es/pdf/ITSEC.pdf
http://www.oc.ccn.cni.es/pdf/ITSEC.pdf
http://www.commoncriteriaportal.org/public/developer/index.php?menu=2
http://www.commoncriteriaportal.org/public/developer/index.php?menu=2

[biblio03_06] (ITSEC 1999) Information Technology
Security Evaluation Criteria, E3–F/C2 Evaluation,
http://www.microsoft.com/technet/archive/security/
topics/issues/e3-fc2ev.mspx. April 1999.

[biblio03_07] (Common Criteria 2006) Common
Criteria Project. List of Evaluated Products,
http://www.commoncriteriaportal.org/public/
consumer/index.php?menu=4.

[biblio03_08] (CERT 1997) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-1997-20 JavaScript
Vulnerability," http://www.cert.org/advisories/
CA-1997-20.html. July 1997.

[biblio03_09] (CERT 1994) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-1994-07 wuarchive
ftpd Trojan Horse," http://www.cert.org/advisories/
CA-1994-07.html. April 1994.

[biblio03_10] (CERT 2001a) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2001-19 ‘Code
Red’ Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL," http://www.cert.org/
advisories/CA-2001-19.html. July 2001.

[biblio03_11] (CERT 2001b) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2001-26 Nimda

113

http://www.microsoft.com/technet/archive/security/topics/issues/e3-fc2ev.mspx
http://www.microsoft.com/technet/archive/security/topics/issues/e3-fc2ev.mspx
http://www.commoncriteriaportal.org/public/consumer/index.php?menu=4
http://www.commoncriteriaportal.org/public/consumer/index.php?menu=4
http://www.cert.org/advisories/CA-1997-20.html
http://www.cert.org/advisories/CA-1997-20.html
http://www.cert.org/advisories/CA-1994-07.html
http://www.cert.org/advisories/CA-1994-07.html
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-19.html

Worm," http://www.cert.org/advisories/
CA-2001-26.html. September 2001.

[biblio03_12] (CERT 2001c) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2001-37 Buffer
Overflow in UPnP Service on Microsoft
Windows," http://www.cert.org/advisories/
CA-2001-37.html. December 2001.

[biblio03_13] (Microsoft 2002) Microsoft
Corporation. Executive E-mail, "Trustworthy
Computing," http://www.microsoft.com/mscorp/
execmail/2002/07-18twc.asp. July 2002.

[biblio03_14] (Paul and Evans 2006) Paul,Nathaniel,
and DavidEvans. University of Virginia, Department
of Computer Science, "Comparing Java and .NET
Security: Lessons Learned and Missed,"
http://www.cs.virginia.edu/~nrp3d/papers/
computers_and_security-net-java.pdf.

[biblio03_15] (Howard and LeBlanc 2002)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, 1st ed. Redmond, WA: Microsoft Press, 2002.

114

http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-37.html
http://www.cert.org/advisories/CA-2001-37.html
http://www.microsoft.com/mscorp/execmail/2002/07-18twc.asp
http://www.microsoft.com/mscorp/execmail/2002/07-18twc.asp
http://www.cs.virginia.edu/~nrp3d/papers/computers_and_security-net-java.pdf
http://www.cs.virginia.edu/~nrp3d/papers/computers_and_security-net-java.pdf

Chapter 4. SDL for
Management
In this chapter:

Commitment for Success

Managing the SDL

This chapter tells managers what they need to know
about the Security Development Lifecycle (SDL). Our
major focus is the role of managers in making the SDL
succeed: what the manager or executive must do to
ensure that his or her team can build more secure
software.

Another purpose of this chapter is to prepare the
manager or executive to deal with the impact of the
SDL on development projects: what kinds of resources
will be required, what impact the SDL will have on
costs and schedules, and how the manager should
assess whether the project is on track to comply with
SDL requirements.

Commitment for Success
It is very important that managers understand the
SDL’s impact on the software they produce and the
expectations that SDL places on the stakeholders in

115

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch04s02.html

their organizations. SDL is not free—it requires time,
money, and the strong commitment of senior
managers to prioritize security over other factors such
as time to market and compatibility with older, less
secure software versions. One key measure of success
for this chapter is if a senior executive reads it and
walks away saying: "Yes, that makes perfect business
sense."

Commitment at Microsoft
In their "day jobs," the authors often brief Microsoft
customers and partners on the inner workings of the
SDL, explaining how Microsoft is using the process to
create more secure products. One question that we
frequently hear is: "What component or aspect of the
SDL has been most important to its success?" There is
no easy answer to this because the SDL is an
integrated process that comprises a large number of
individual and equally important phases. The viability
of the SDL within an organization such as Microsoft is
intimately tied to the fact that each phase is necessary
and contributes to improved product security. If any
phase were unimportant, the SDL team would have to
remove or modify it or face a loss of credibility for the
entire process. Training, which is not so much a
discrete phase as a cross-cutting component that
affects all phases, usually makes the "extremely
important" list, as does threat modeling.

116

Note

Every task within SDL is there for a reason: it
leads to more secure software. If any task were
deemed ineffective, it would be removed from
SDL.

Still, executive commitment to the SDL process is the
key factor for success. Bill Gates sent e-mail
committing Microsoft to a sustained drive toward
Trustworthy Computing, telling individual
contributors, middle managers, and senior executives
throughout the company that the rules and priorities
for Microsoft’s development teams had changed. And
the fact that the group and senior vice-presidents
responsible for Microsoft Windows Server 2003 (and
other products) decided to stop development and delay
schedules in order to conduct security pushes and
complete Final Security Reviews told everyone
concerned that Microsoft was willing to do what was
necessary—in terms of longer product schedules and
extra staff effort—for improved security. Of course,
shipping on time is extremely important at Microsoft
(and in most other software companies), so this was a
very significant change and one that managers might
be expected to resist. The commitment of the most
senior executives in the company to delaying products
as needed to improve security told all concerned that

117

Trustworthy Computing was a reality and not just a
slogan. And the continued commitment by Microsoft’s
top management to Trustworthy Computing and the
SDL has led to a culture change at Microsoft—today,
everyone knows that product groups must do what it
takes to meet security requirements before they ship
their products.

In the authors’ view, managers’ and executives’ most
important contribution to the SDL is support for the
process. And executive support for the SDL has been
the key factor in making the process successful and
effective.

Important

The biggest single factor in the success of SDL is
executive support.

To lead effectively at Microsoft, managers must
understand and get involved in the issues and
challenges that confront their organizations. This
means that managers must understand the security
problems that their products pose and commit to
resolving those problems. The facts that motivated this
commitment at Microsoft were discussed briefly in
Chapter 3:

118

▪ Customers were complaining about the frequency
and cost of patching for security vulnerabilities.

▪ Actual attacks manifested in the form of worms
and viruses were disrupting customers’ IT
operations to an extent that made the attacks very
visible to both operations staffs and end users.

▪ Press coverage was focusing on security
problems to the point of overshadowing product
improvements.

▪ The need for frequent patching diverted
Microsoft developers’ time and attention away
from new features and new code and toward
responding to security vulnerabilities. Although
the costs of patch development were not great in
absolute terms, the frequent need to divert
developers to patching made development
schedules less predictable—and conveyed to
teams and their managers the dimensions of the
security challenge.

In sum, real-world business considerations dictated
that Microsoft address customers’ needs for improved
security and more than justified the investment in the
SDL. Not only is it more efficient to build watertight
boats than to divert the shipwrights to plugging leaks,
but the customers are much happier with the results.

119

Is the SDL Necessary for You?
Because implementing the SDL is expensive—and the
authors have already made it pretty clear that it’s not
cheap—any effective manager is going to ask whether
the SDL is really necessary. The answer is, of course,
"It depends." If customers rely on the security of your
software, then it behooves you to ensure that the
software you supply is up to the challenge. Platform
products—operating systems, database systems,
e-mail and collaboration servers—obviously fall into
this category because they must protect the
confidentiality and integrity of user data and because
the computing resource provided by the platform must
remain available even in the face of hostile attack. But
security is equally vital in other kinds of products,
including e-commerce (Web) applications and many
of the line-of-business applications that are used
within organizations (where sensitive data must be
handled and not all users are equally trusted or
authorized). Many applications developed by
government contractors handle sensitive information,
which demands stringent security measures. Although
the security of these applications could be
circumvented if the underlying platform were
insecure, attackers will target the applications
themselves if security measures at the platform level
make attacks there costly or infeasible.

The extent of the challenge that any particular
software product or package faces depends on how

120

exposed the software is to potential threats and on the
value of the information that it is used to process. In
Chapter 3, we summarized Microsoft’s tests for the
applicability of the SDL to software
products—software that is used in a business or
organization, software that is exposed to the Internet,
or software that is used to process sensitive or personal
information. When considering the application of the
SDL to in-house (line-of-business) applications, it’s
important to focus on the impact on the business if the
data were disclosed, modified, or destroyed. Recent
attention in the media and by government and
consumer advocates to disclosures of customer data
have reemphasized the potential impact of security
failures in e-commerce and line-of-business
applications.

The security of Microsoft software has historically (at
least since the mid-1990s) been exposed to special
scrutiny because of its wide deployment in personal,
business, and organizational environments. A
researcher who discovers a vulnerability in Microsoft
software might have found a way to attack millions of
systems and their users! And the popularity of
vulnerability research on Microsoft software has
provided a degree of "cover" for smaller development
organizations. However, recent (as of 2005 and 2006)
trends in the discovery and publication of software
vulnerabilities have demonstrated that if the work
required to attack a Microsoft software product
increases, the vulnerability seekers will look
elsewhere.

121

Note

As Microsoft enhances the default security of its
products, attackers are turning their attention to
lower-hanging fruit—other software in which
security best practices have not been followed.

In one case that the authors consider a significant
success for the SDL, vulnerability finders radically
reduced their attention to Microsoft SQL Server
software—which had previously been a prime
target—and focused their efforts on Oracle database
products (Mogull 2006). Even if vulnerabilities remain
in SQL Server—and we are sure that it has not yet
achieved perfection—users of this particular Microsoft
product are safer because new vulnerabilities are not
being discovered or exploited. In a similar
development, the SysAdmin, Audit, Networking, and
Security (SANS) Institute reported that vulnerability
finders were increasingly focusing on security and
backup software that users had acquired with the
expectation that such software would keep their
systems and data safe (SANS 2005).

The fact that vulnerability finders will seek alternative
targets whose vulnerabilities are easier to find than
those in Microsoft software has a direct bearing on the
priority of the SDL for both software vendors and

122

enterprises’ internal IT development organizations.
Vulnerability finders have never confined themselves
exclusively to Microsoft software, and it’s clear that
their attention to other vendors’ products is increasing:
this trend is evident from the National Vulnerability
Database maintained by the U. S. National Institute of
Standards and Technology (NIST 2006). There have
already been comments in the media to the effect that
enterprise line-of-business IT systems are the next
target for security researchers and security attacks.
The developing trend toward targeted attacks focused
on financial gain rather than on Internet vandalism
also makes enterprise applications an appealing target.

You might want to know where it’s not necessary to
apply the SDL in software development. The answer is
that most software sold to customers or used by an
organization or business should go through the
process! Some standalone games or other
entertainment products that don’t handle sensitive
information or touch the Internet are exceptions, as are
applications developed by an organization for very
limited use (such as one-time data analysis
applications). However, even software that does not
otherwise qualify for application of the SDL should be
reviewed to ensure that it does not somehow
compromise or expose the platform on which it’s
run—for example, by installing unprotected user
accounts or modifiable executable files.

In summary, we believe that the rules that Microsoft
uses (enterprise application; exposure to the Internet;

123

sensitive information) to determine applicability of the
SDL can serve as a guide for other organizations that
are trying to decide whether they need to apply the
SDL to their development efforts. Of course, we leave
the precise determination of need to each product
vendor or IT organization, but as a general principle,
we believe that most software development
organizations—whether vendors of packaged
software, developers of e-commerce applications, or
in-house line-of-business developers—will need to
deploy a process similar to the SDL at some point.

124

Effective Commitment
If you have decided that it’s necessary to apply the
SDL to some or all of the software that your
organization develops, what do you as a manager have
to do to ensure that your organization’s efforts are
effective? The next few paragraphs summarize actions
that we believe a manager should take to support the
application of the SDL in his or her organization.

Make a Statement
If you believe that it’s important for your development
teams to implement the SDL and produce more secure
software, you have to make that belief clear. At
Microsoft, Bill Gates sent his Trustworthy Computing
e-mail, but that was not all. Jim Allchin (then the
group vice-president of the Platforms Group)
personally kicked off the briefing/training session
when we started to engage component team managers
in the planning of the Windows security push, and
Brian Valentine (the senior vice-president of the
Windows Division) sent division-wide e-mails telling
his employees what we were about and why it was
important. The same story applies to the Microsoft
Exchange and SQL Server products.

Note

125

Contrary to what you might read in the press, the
various security pushes across Microsoft were not
the method by which we shipped more secure
software—they were simply the start of a long
journey.

The preceding examples are specific to Microsoft, and
although experience has shown that the methods
introduced in this book are much more effective than
conducting a one-shot security push, the need for an
executive statement remains. The people who are
designing, writing, and testing the code need to hear
from you and understand that you believe the changes
to their work involved in implementing the SDL are
important, and why.

126

Be Visible
It is not sufficient to make a single statement about the
importance of the SDL and expect your subordinates
to follow through on their own. As with everything
that managers do, follow-up is important. During the
Microsoft Windows security push, Brian Valentine
and the vice-presidents who worked for him sent
status e-mails, held periodic meetings, and engaged
with people across their organizations to remind them
of how important security was to the success of their
products. We identified the teams and individuals who
were doing the best jobs of finding security bugs and
recognized them with public statements and prizes.
Today, with the SDL a normal part of product
development at Microsoft, executives continue to
communicate, in e-mails and team meetings, the
importance of security and the necessity of meeting
the requirements of the SDL. It’s very important for
you to provide reminders, recognition, and rewards
consistent with the culture of your organization to
encourage effective execution of the SDL.

Again, our task of organizing and executing visible
recognition during the many product security pushes
was relatively simple. Security was the only thing the
teams were working on, and the duration of each push
was finite. But there are many milestones and
deliverables in the SDL (threat models built, legacy
code or interfaces removed or disabled, tests
completed, bugs found) that offer opportunities for

127

statements, recognition, and reinforcement by
management. You should take advantage of these
opportunities to ensure that your teams know what you
expect and know that you are watching and intend to
encourage behaviors that lead to more secure software.

128

Provide Resources
Earlier, we mentioned that implementing the SDL had
a significant impact on product schedules at Microsoft,
and we’ll talk about how significant later. But you
should know that there is a cost to implementing the
elements of the SDL, and if you’re serious about
shipping more secure software, you’ll need to pay that
up-front cost. (We know that customer satisfaction
with the security of Microsoft products that have
undergone the SDL has improved, and we are
confident that the SDL has more than paid for itself in
improved customer satisfaction and reduced impact of
vulnerabilities on customers and on Microsoft teams.)
When you look at development schedules and tools
budgets—to take two examples—elements of the SDL
are almost certain to be visible if your teams are
executing the process "right," especially if they are
just introducing the SDL to your development
organizations. You’ll have the choice of signing off on
those resources and making it clear that you believe
they’re important, or "pushing back" and expecting
your organization to implement the SDL on the cheap.
Software security is an area in which you get what you
pay for; if your teams are asking for the resources to
implement the SDL in an honest and effective way,
support them.

The most striking example of providing resources that
we’ve seen came, again, during the Windows security
push. As we were starting to plan the push, we held an

129

initial meeting with one of the Windows Server 2003
project managers and got an offer to stop development
for two working days while the teams working on the
server product attended training, did code reviews, ran
tools, built threat models, and did penetration testing.
Given the magnitude of the product and that this was
our initial security push, that offer was woefully
inadequate to the need, and we persevered with a
request for a longer security push. Eventually, we got
a commitment for a four-week security push and
began executing it. As the scope of the work became
clear, it was evident that even a four-week push would
not accomplish what was needed, and the senior
management of the Windows Division (with the
complete agreement of the project manager who’d
initially made the offer of a two-day push) extended
the duration of the push from four weeks to eight. Of
course, we all had to do our homework regarding what
kind of effort was needed, how long it would take, and
why it was important—but the point was that
management provided the resources that the work
really demanded. The key aspect of this commitment
is that the security push was finished when the work of
the push was complete, not when some arbitrary date
arrived.

130

Stop Products
We wish that this last component of effective
commitment were never necessary, and in your
organization it might not be. But one aspect of
management support for the SDL is being prepared to
recognize when a product is not ready to ship and
making the decision to delay until it is. The suggestion
to "stop products" might make you think of getting
close to shipping and then realizing that the product
isn’t secure enough, and that is indeed one possibility.
But in reality, a decision to stop or delay shipping can
come in a variety of flavors, at a variety of times, and
for a variety of reasons.

▪ The rates of discovery of security bugs might be
unacceptably high, and you might need to allow
more time for the rate to drop to the point at
which your security review and penetration
testing teams are being frustrated by the high
level of security of the product they are reviewing
and testing.

▪ It might become evident that a feature not only is
insufficiently secure, but that it will never be
made sufficiently secure. You might have to
make the hard decision to remove the feature
from the product.

▪ Your internal security team, or an outside
security researcher, might discover a new class of
vulnerability that neither you nor anyone else had

131

previously known about. You might have to
decide whether to ship with vulnerable code or to
delay the product and eliminate the root cause of
the problem.

▪ Finally, a component or an entire product might
fail the Final Security Review (FSR) that comes
toward the end of the SDL and assesses "fitness
to ship." You might have to support the FSR team
and delay the product until it can pass.

The best example we know of stopping a
product—and one that took considerable commitment
to security—was the case of the Microsoft .NET
Framework and .NET common language runtime
(CLR). Before there even was an SDL, and without
knowing precisely what steps would address their
security concerns, the management of the Framework
team decided that the rate of discovery of security
vulnerabilities in their code was too high and delayed
their ship schedule, and they launched the first security
push, at that time called a "security stand-down." Not
only were security bugs found and fixed, but the
default configuration of the .NET Framework and
CLR were made more conservative to maximize the
chance of mitigating any defects that might be left in
the code. (In the four years since its release—after the
stand-down—the .NET Framework and CLR have
been the subject of only three security updates
addressing externally discovered vulnerabilities, and
none of these was in the core framework runtime
software.) We wish that the need to "stop ship" never

132

arose, but we’ve lived through examples of each of the
cases listed here and seen product group executives at
Microsoft make the right decisions for security at the
cost of schedule and/or features.

133

Managing the SDL
In this section, we provide you with some thoughts on
the resources you’ll have to commit to implementing
the SDL in your organization. Unfortunately, this
section won’t give you prescriptive guidance about
resource requirements for the SDL. The reason is that
almost everything we can say about resources begins
with "it depends . . ." We’ll also suggest how a
manager or executive can tell whether a development
project is on track in implementing the SDL.

Resources
We know from experience that there are a great many
variables that determine the resources needed to
implement the SDL, and we have a good idea of the
ways in which they affect the resources needed to
implement the SDL successfully. But we can’t yet
give you a set of equations that says, for example: "For
this code size and this implementation language and
this level of exposure to the Internet, here’s the factor
that you should apply to the planned development
resource level to get to SDL compliance." One reason
is that we don’t really collect fine-grained resource
data at Microsoft. Unlike defense contractors or other
services firms that do development at an hourly rate,
Microsoft typically assigns a team to own one or more
products and allocates the cost of the team to the
product. There’s no attempt to identify the

134

finer-grained costs of individual activities within the
development process. So the salaries of testers on
Windows are charged to the current Windows release,
whether those testers are testing new features for
application compatibility or doing security "fuzz
testing" as part of the SDL.

Factors That Affect the Cost of SDL
Despite our lack of quantitative guidance on the costs
of the SDL, we can identify some of the factors that
we know to make a difference in implementing the
SDL effectively. We believe that most of these factors
will be just common sense, but we hope that a few will
surprise some readers:

▪ Implementing the SDL is cheapest if it’s being
applied to a project that is building a product or
application from scratch. Your ability to choose
languages, coding standards, and tools with
security in mind—and to avoid mistakes rather
than fix them—makes for efficiency in time and
effort.

▪ Similarly, applying the SDL to a mass of "legacy
code" (written before security was a
consideration) is expensive. The teams have to
find problems, make changes, and then ensure
that their changes don’t cause any problems, such
as backward compatibility, with the correct
functioning of the product or component.

135

▪ From the two preceding items, it follows that the
second and subsequent releases of code that has
gone through the SDL should be less costly than
the first. The first SDL release pays the price, in
time and schedule, to clean up most of the latent
problems, and subsequent releases can
concentrate on preventing defects from being
entered in the first place and on looking for newly
discovered classes of vulnerabilities.

▪ All things being equal, it will be easier to apply
the SDL to a language that produces managed
code—such as C#, Microsoft Visual Basic .NET,
or Java—than to an unmanaged one such as C or
C++. Although it’s absolutely not the case that
managed code is guaranteed to be secure, there
are classes of security vulnerabilities that
developers can’t introduce in managed code. For
example, it’s not possible to write a buffer
overrun in C#, as it is in C or C++, although it is
still possible for a developer to write an
application in C# that is vulnerable to a SQL
injection attack. The fact that it’s not possible to
include certain kinds of vulnerabilities in an
application written in managed code saves the
effort that would otherwise be required to look
for, find, and remove them.

▪ It is often both better—that is, more secure—and
cheaper to remove a feature than to fix it.
Obviously, if you applied this rule in an extreme
way, you would ship nothing at all, and it would

136

be perfectly secure. That is not what we are
suggesting. But if you are faced with a feature or
component that presents significant security
problems and is either not widely used or
obsolete, it might be better to remove it or disable
it by default than to bring it up to a level of
security appropriate to the current threat
environment. Note that disabling by default can
be—but should not be—a crutch for shipping an
insecure design or security bug–ridden code. If a
feature or component is insecure and off by
default, but you know that many users will enable
it, you should either pay the price to fix it or bite
the bullet and remove it.

▪ Tools are almost always more effective and more
efficient than a manual search for implementation
vulnerabilities. This does not mean, however, that
such tools are a panacea and find all security
bugs. Tools can parse vast quantities of code
rapidly, faster than a human could, but tools are
no replacement for humans. You may have read
or heard of the major Microsoft tools, such as
PREfast, that we use to scan unmanaged code for
buffer overruns and some other kinds of
vulnerabilities. But we also build tools as needed
when a new kind of vulnerability is discovered
and we believe that it might occur throughout a
product or set of products. For example, we’ve
built testing tools to find and report classes of
remote procedure call (RPC) vulnerabilities and

137

scanning tools to find and report common errors
in system configuration.

▪ A product or component with a long history of
security vulnerabilities, or a product that has
exhibited security vulnerabilities resulting from
design (rather than code) errors, is likely to be
costly to bring to an acceptable level of security.
It might be tempting to say that you have "done
enough" to such a product, but this is the area in
which you can easily deceive yourself. It’s much
better to pay what it costs to find and remove
vulnerabilities than to watch the new
vulnerability reports keep rolling in!

▪ Training helps to reduce the cost of security. This
might sound obvious, but it’s still worth
emphasizing: an effective training program will
motivate your designers and developers to
produce more secure software in the first place.
The code reviews, tools, and testing will find
fewer problems, and implementing the SDL will
be quicker and cheaper.

▪ Secure designs reduce the number of code-level
errors that result in security vulnerabilities and
reduce the severity of the vulnerabilities that
remain. As a result, code reviews, tools, and
testing will find fewer security vulnerabilities that
need to be addressed.

138

Rules of Thumb
As stated earlier, we don’t have solid guidance on the
cost of implementing the SDL, but we do have a rough
idea of what the SDL, as implemented on several
products that have undergone the process, has cost
Microsoft. Our best guess is that the SDL for a product
that has significant legacy code and is going through
the SDL for the first time might cost as much as 15 to
20 percent in schedule (and thus engineering effort).
As you’d expect, the presence or absence of the
factors outlined in the previous section can drive this
resource level up or down.

We are confident that the "steady state" resource level
required to implement the SDL on a product that was
initially developed under the SDL, or has gone
through one or two prior SDL releases, is significantly
less than the 15 to 20 percent previously estimated.
However, our experience with the SDL is not yet
extensive enough for us to provide a confident
estimate of how low the steady state cost will go. And
we are also confident that the cost—in impact on
customers, in impact on our reputation, and in lost
sales—of not implementing the SDL would have
significantly exceeded the costs of implementing it.

139

Is the Project on Track?
This section provides some suggestions for managing
the execution of the SDL. How do you know whether
the product team is executing the SDL effectively and
building a more secure product?

Beginning with Chapter 5, and throughout Part II,
we’ll discuss in detail the activities that make up the
individual stages of the SDL. Each of the SDL’s
stages requires the conduct of specific activities and
the production of specific outputs, either in the form of
documents (in a few cases) or of bugs in the project’s
workflow system, that must be investigated and (in
many cases) fixed. A manager or executive who is
committed to applying the SDL to his or her products
should pay close attention to those outputs to
determine how the effort is actually going. The
following list outlines some of the key measures that
are helpful in assessing the quality of SDL
implementation "on the way," so that managers won’t
be surprised when the product ships.

▪ Track training attendance for your teams. If your
training includes tests or qualifying exams, you
should track scores also.

▪ Track threat model production and quality early
in development. You’ll have to have a specialized
security team analogous to Microsoft’s Secure
Windows Initiative team. One of their tasks
should be to review threat models to ensure that

140

they are not only present but effective in
identifying potential vulnerabilities early in the
process.

▪ Monitor the rates and types of security bugs
found during product design, development, and
testing. Overall, is the number of real or potential
security vulnerabilities dropping as the project
reaches completion? Are there specific classes of
vulnerabilities (either by type, such as buffer
overrun or cross-site scripting, or by component)
that are not dropping with the rest?

▪ Track the impact of externally discovered
vulnerabilities that affect your product. If there
are earlier versions of your product in the field, or
if there are similar products in the field, ask
whether vulnerabilities similar to those
discovered by outside vulnerability finders would
have been present in your product if it had
shipped under the current "plan of record." Of
course, you’ll find and fix such vulnerabilities
before your product ships. But if your only clue
to their presence was the "external find," this
suggests that your SDL process is not doing what
it should.

Following these suggestions will give you a lot of data
to review and should help you assess both the
effectiveness of your process and the trend of your
product toward readiness to ship. The keys to effective
management and monitoring are to watch the numbers
and trends and learn what they mean in terms of

141

effective execution of the SDL—and the development
of more secure software.

142

Summary
Executives and managers play a vital role in the
implementation of the SDL in a software development
organization. Management commitment is vital to a
team’s success at implementing the SDL and
producing more secure software. Measuring both costs
and benefits of the SDL is difficult. Although there are
not yet any authoritative guidelines about the impact
of the SDL on project cost and schedule, monitoring
the deliverables and activities associated with each
phase in the SDL can give managers a clear idea
whether the project is on track and how much the SDL
is costing. Tracking external measures, such as
customer satisfaction with security and the rate of
security incidents affecting products and services, can
give managers a similar understanding of the benefits
of implementing the SDL.

143

References

144

Bibliography
[biblio04_01] (Mogull 2006) Mogull,Rich. "Flaws
Show Need to Update Oracle Product
Management Practices," http://www.gartner.com/
resources/137400/137477/
flaws_show_need_to_update_or_137477.pdf. January
2006.

[biblio04_02] (SANS 2005) "SANS Top 20
Internet Security Vulnerability Shows
Attackers Are Using New Approaches for
Which Users Are Not Prepared," SANS
NewsBites, Vol. 7 Num. 55, http://www.sans.org/
newsletters/newsbites/
newsbites.php?vol=7&issue=55#200. November
2005.

[biblio04_03] (NIST 2006) National Institute of
Standards and Technology. NIST National
Vulnerability Database, http://nvd.nist.gov.

145

http://www.gartner.com/resources/137400/137477/flaws_show_need_to_update_or_137477.pdf
http://www.gartner.com/resources/137400/137477/flaws_show_need_to_update_or_137477.pdf
http://www.gartner.com/resources/137400/137477/flaws_show_need_to_update_or_137477.pdf

Part II. The Security
Development Lifecycle Process

146

Chapter 5. Stage 0: Education
and Awareness
In this chapter:

A Short History of Security Education at Microsoft

Ongoing Education

Types of Training Delivery

Exercises and Labs

Tracking Attendance and Compliance

Measuring Knowledge

Implementing Your Own In-House Training

Key Success Factors and Metrics

We are often asked why the Security Development
Lifecycle (SDL) has been so successful at reducing
vulnerabilities in Microsoft software. There are two
very simple answers: executive support, and education
and awareness. Getting Bill Gates and Steve Ballmer
100 percent committed to SDL was critical (Microsoft

147

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch05s04.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch05s06.html

2002), but nearly as critical in security work is an
educated engineering workforce.

If your engineers know nothing about basic security
tenets, common security bug types, basic secure
design, or security testing, there really is no reasonable
chance that they will produce secure software. We say
this because, on average, software engineers know
very little about software security. By security, we
don’t mean understanding security features; we mean
understanding what it takes to build and deliver secure
features. It’s unfortunate that the term security is
overloaded in this manner because these are two very
different security realms. Security features refer to
how defensive mechanisms work—for example, the
inner operations of the Java sandbox or of the
Microsoft .NET common language runtime—or how
encryption algorithms, such as Data Encryption
Standard (DES) or Rivest-Shamir-Adleman (RSA),
work.

Although these are interesting and useful topics,
knowing that the DES encryption algorithm is a
16-round Feistel network isn’t going to help people
build software that is more secure. On the other hand,
knowing the limitations of DES, and that its key size is
woefully small for today’s threats, is very useful, and
this kind of detail is the core tenet of how to build
secure features. The real concern is that most schools,
universities, and technical colleges teach security
features but not how to build secure software. Year
after year, these schools churn out legions of software

148

engineers who believe they can build secure software
because they know how a firewall works. In short, you
cannot assume that anyone you hire understands how
to build security defenses into your software.

In this chapter, we’ll explain how to build a security
education and awareness program for your
engineering staff. But first we want to outline how we
evolved this program at Microsoft.

A Short History of Security
Education at Microsoft
Microsoft has always created a great deal of excellent
internal technical education for its employees. This
education has focused on such diverse subjects as the
following:

▪ Software engineering principles

▪ Lessons learned from past projects

▪ Software architecture

▪ Testing methods

▪ Transaction technology

▪ Reliability

▪ Scalability

▪ Understanding future technical directions

149

▪ Various technologies, such as XML, ASP, SOAP,
and so on

▪ Programming languages

▪ Interface design

▪ Accessibility

There have always been security sessions, too, but
again, most of them focused on how security
technologies work, not on how to build secure
software.

As discussed in Chapter 3, in 1999 and 2000, the
Secure Windows Initiative team started holding a
series of security "bug bashes" across the company to
hunt for security bugs before products or features
shipped to customers. A typical bug bash day would
follow an agenda something like that shown in
Table 5-1.

Table 5-1. A Typical Security "Bug Bash" Day

Time Event

9:00
A.M.–9:10
A.M.

Kickoff by the group’s vice-president

9:10
A.M.–11:00
A.M.

Basic security training pertinent for the
group

150

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch05.html#typical_security_quotation_markbug_bashq

Time Event

11:00
A.M.–5:00
P.M.

Hunt for security bugs, build threat models,
and perform basic penetration testing

5:00
P.M.–5:30
P.M.

Hand out prizes for the largest number of
bugs found, the bug found written by the
most senior person, and so on

Although the apparent purpose of the bug bashes is to
find security bugs, the real, underlying purpose is to
simply raise awareness within the product group. The
up-front basic security training is simple and covers
the following topics:

▪ Common excuses for not fixing security
bugs. This list appears in Appendix B,
"Ridiculous Excuses We’ve Heard," of Writing
Secure Code, Second Edition (Howard and
LeBlanc 2003). This tended to be a humorous
litany of war stories, but the humor is important
because it makes the stories stick in people’s
minds.

▪ Design issues that can lead to compromise. A
look at design errors such as leaving ports open,
erroneous key storage, bypassing authentication
and authorization schemes, evading logging
methods, and so on.

151

▪ Understanding threats to software. We’ll cover
this topic in more detail—and with the benefit of
five years of threat-modeling research—in
Chapter 9.

▪ Insecure coding techniques. A quick romp
through common coding errors such as buffer
overruns, cross-site scripting, structured query
language (SQL) injection, and weak encryption.
In the early days, there was no discussion of
integer arithmetic errors because they were
virtually unheard of at the time.

The security bug bashes were pretty low-tech and
somewhat entertaining, and although real security
bugs were found, simply hunting for security bugs in
this manner is not a sustainable process. But perhaps
more importantly, the bug bash education started to
form the basis of all security education at Microsoft.

Following Bill Gates’s Trustworthy Computing
memo, our group started working on ongoing security
education for all engineering disciplines within the
organization. This culminated in a four-hour,
lecture-style awareness presentation dubbed "The
Basics of Secure Software Design, Development, and
Test" (or, simply, "The Basics"). The goal of this
lecture was not to turn people into security experts;
rather, it was to raise awareness of security issues and
to let people know what was (and currently is)
expected of them.

152

On the CD

An updated version of the "The Basics" class is
available on the companion disc that accompanies
this book.

The outline of "The Basics" presentation is as follows:

▪ Overview of Trustworthy Computing

▪ Short Introduction to SDL

▪ Basics of Secure Design

▪ Attack Surface Reduction

▪ Defense in Depth

▪ Least Privilege

▪ Secure Defaults

▪ Threat Modeling

▪ Designing to Threat Model

▪ Coding to Threat Model

▪ Testing to a Threat Model

▪ Introduction to Fuzz Testing

▪ Secure Coding Best Practices

▪ Buffer Overruns

153

▪ Integer Arithmetic Issues

▪ Cross-Site Scripting

▪ SQL Injection

▪ Weak Cryptography

▪ Microsoft .NET–Specific Issues

Again, it’s important to point out that "The Basics"
presentation does not make anyone in the audience a
security expert, although it does outline the need for
security and quickly makes people realize how little
they know about security. Acknowledging that there’s
a lot that they don’t know about software security
makes people willing to have their ideas, designs,
code, and test plans reviewed by others who do
understand the security issues in depth.

154

Ongoing Education
All Microsoft engineering staff must attend security
training at least once a year. At first, the only class
available was the "The Basics" presentation, but
attendance is not appropriate once a person has taken
the course, even though the content does change
substantially. In fact, the content changes every month
to reflect new threats, research, and mitigations. With
this in mind, we hired another person and started
working on a more in-depth security curriculum to
address the needs of specific disciplines. At the time
of writing, the following classes are either complete or
being developed:

▪ The Basics of Secure Software Design,
Development, and Testing. This class introduces
all engineers to the basics of security.

▪ Fuzz Testing in Depth. Explained in detail in
Chapter 12, this class is an effective way to find
certain classes of security bugs. This class
explains how fuzz testing works, how to build
effective fuzz tests, and how to identify
fuzz-testing failures.

▪ Threat Modeling in Depth. Explained in detail
in Chapter 9, threat modeling is a method for
uncovering design flaws in a software component
before the component is built. This class, which

155

includes a small exercise at the end, outlines the
process.

▪ Implementing Threat Mitigations. This class
begins where the threat-modeling class leaves off.
The original threat-modeling class covered the
threat-modeling process as well as development
tasks and test tasks. This turned out to be a great
deal of content, spanning many disciplines, and
was simply too unwieldy. The present
threat-modeling class covers just the
threat-modeling process, and the "Implementing
Threat Mitigations" class is aimed mainly at
developers and helps them to decide how to
choose the appropriate mitigations or
countermeasures.

▪ Security Design and Architecture:
Time-Tested Design Principles. We touch on
this subject in Chapter 7. Most software
developers focus solely on best practice to lift
themselves out of the security pit, but we need to
go much further than simple best practice.
Engineers should learn some of the basic security
models, such as the Bell-LaPadula Disclosure
model (Wikipedia 2006a) and the Biba integrity
model (Wikipedia 2006b), and secure design
principles such as Saltzer and Schroeder (Saltzer
and Schroeder 1975).

▪ Introduction to the SDL and Final Security
Review (FSR) Process. This class covers the
end-to-end SDL process, but most important, it

156

prepares development groups for the final
security review, outlining what they can expect
during an FSR. The target audience is more
senior employees because these folks need to
build SDL time into their schedules. A key facet
of the class is explaining the importance of
building time into the schedule for all the SDL
requirements.

▪ Security Tools Overview. There are many
security tools available inside and outside
Microsoft. This class covers some of the most
important tools for performing code analysis,
design analysis, attack surface reviews,
penetration testing, threat modeling, and fuzz
testing.

▪ Performing Security Code Reviews. Very few
people know how to review code correctly for
security bugs. This class teaches some of the
critical skills, such as understanding lack of
trustworthiness of most incoming data, as well as
ranking system entry points by potential
"attackability." This in part is driven by the threat
model, which identifies the dangerous interfaces
into the application.

▪ Secure Coding Practices. Going beyond "The
Basics," this class teaches developers how to
create secure software not simply by applying
best practice, but also by using good, sound
security discipline and secure coding patterns.

157

▪ Security Bugs in Detail. This class covers a
catalog of security bugs along with their causes,
mitigations, and defenses. The class then
examines security bugs in more detail, showing
specific bugs in various software products.

▪ Attack Surface Analysis (ASA) and Attack
Surface Reduction (ASR). This class outlines
what defines attack surface for common
applications and platforms and how to drive
attack surface down while trying to keep the
application useful for customers. ASA is covered
in detail in Chapter 7.

▪ Exploit Development. This advanced class
outlines how to create exploit code to take
advantage of vulnerabilities. Obviously, the
purpose of the class is to educate, not to attack
real systems. When it comes to showing how
dangerous security bugs can be, there is nothing
quite as effective as seeing an exploit in action.

▪ Build Requirements. The target audience for
this class is people involved in creating the daily
build. Admittedly, most companies don’t need
this class, but for companies like Microsoft, it’s
important because the build process must be
protected, and the correct security tools must be
run on the build.

▪ Security Response. There will be security bugs
in products, and it’s important that your team
understands what the security response is going

158

to be. This subject is covered in detail in
Chapter 15.

▪ Cryptography by Example. This class takes a
scenario of two people wishing to communicate
securely and builds up to a secure solution using
cryptographic primitives to mitigate real threats.
The second part of the class covers cryptographic
best practice.

▪ Customer Privacy. This online training class
focuses on protecting customer data, most
notably protecting private user data maintained
by some of the Microsoft online properties, such
as MSN (Microsoft 2006a). The basics taught
include legal aspects of privacy, privacy
statements, the data lifecycle, and
privacy-enhancing technologies (PETs), as well
as global privacy policy such as notice, choice,
access, security, onward transfer, data integrity,
and enforcement.

Important

If your company creates or uses software that
stores and maintains private user data or sensitive
or confidential data, your engineers must
understand the basics of privacy.

159

Note that this is a partial list of classes, and it will be
augmented and modified in coming years as threats
evolve.

Important

Any education you require for your employees
must provide new specific skills that they can
apply "on the job."

160

Types of Training Delivery
We have found that live training sessions are very
effective, but they do not scale to the thousands of
Microsoft employees. With about 100 people per
session, putting about 25,000 engineers through
training would mean holding 250 training sessions a
year. Microsoft is a software company, not a training
company, and we’re not staffed to conduct so many
sessions. This means that we have to change the way
we present educational material. With this in mind, we
always try to have live training recorded so that it can
be placed on the internal network for engineers to
access whenever they wish.

Tip

Recorded or online educational material
(Microsoft 2006b) helps with geographically
dispersed development teams and acquisitions.

Here is the general path that we follow for developing
a new class:

▪ Objectives and target audience are determined for
the class.

▪ A security expert builds the new class.

161

▪ Other experts review the class material for
technical accuracy and applicability.

▪ Training (not security) experts edit the class
material, looking for consistency and
typographical errors.

▪ We deliver a beta class. The main goal of this
class is to fine-tune timing and get feedback on
content.

▪ We update the class material with the feedback
on content.

▪ We deliver the class at least once a month for six
months.

▪ After six months, we record the class and put it
on the intranet.

In our experience, more people "attend" online
training, but live training tends to be more effective,
mainly because there are often questions that need
answering by the presenter, and this can be done only
in a live setting.

162

Exercises and Labs
Exercises and labs are incredibly important to help
cement concepts in the students’ minds. Let us give
you an example. For a long time at Microsoft, we had
a very hard time teaching people how to make good
threat models. This was in part due to the complexity
of the threat-modeling process, so we made the
process simpler and more definable, but we also added
a small exercise at the end of the class. The exercise
takes only 30 minutes to complete. Feedback from the
new threat-modeling class has been very positive
mainly because of the exercise.

Tip

Consider adding short exercises to your classes.

163

Tracking Attendance and
Compliance
For a product at Microsoft to comply with the SDL, all
engineers must have attended security training within
the past year. When students go to a training session,
they swipe their Microsoft identity badges on the way
in, and this information is entered automatically in a
database of training attendance that goes on the
employees’ education record. We then use that data to
roll up security class attendance by manager or VP.
For example, in the Windows group, we could get a
percentage of attendance for all employees under
Brian Valentine (Senior Vice-President), or, perhaps, a
manager can determine the attendance of his
subordinates. Keep in mind that Microsoft counts only
people who participate in product development. We do
this by matching each employee’s official title against
a list of engineering titles. For example, an
administrative assistant does not need to attend the
training. Of course, they are certainly welcome at the
security class!

As an employee’s one-year anniversary approaches, an
e-mail message is automatically sent, reminding the
employee that he or she must attend another security
class. If they don’t refresh their attendance, the figures
for the employee’s group are affected and the
employee’s manager can take appropriate action.

164

Notice that we use the word compliance. To be
SDL-compliant, product teams must have 100 percent
security training attendance.

Other Compliance Ideas
As this goes to print, the security engineering team at
Microsoft is looking into other ways of measuring
compliance. For example, what if someone attends a
security conference, delivers security educational
material, or perhaps writes a paper on security?
Shouldn’t these people be credited for that work and
the credit go toward their yearly educational quota?
We think the answer is yes, but we have not finalized
how this will be measured. One possibility is to create
a program a little like the Certified Information
Systems Security Professional (CISSP) Continuing
Professional Education (CPE) credit program from
(ISC)2. Individuals who attain CISSP status must earn
a minimum of 120 CPE credits during the three-year
certification cycle to ensure that they stay current with
security trends and issues ((ISC)2 2006). Examples of
CPE include the following:

▪ Attendance at a security conference (1 CPE credit
per hour of attendance)

▪ Security vendor presentation (1 CPE credit per
hour of attendance)

▪ Providing security training (4 CPEs per hour of
preparation)

165

▪ Publication of a security article (10 CPEs)

▪ Publication of a security book (40 CPEs)

▪ Read a security book (5 CPEs)

This kind of program is effective because it allows for
greater flexibility than simply requiring security
course attendance. One proposal underway at
Microsoft is to require a certain number of points per
year for compliance. For example, the policy might be
something like the following:

To be in compliance with SDL, each person
involved in a product engineering discipline
must attain 25 credits per year. Attending
Microsoft security training yields 25 credits,
reading a security book yields 5 credits,
publishing a security article external to the
company yields 10 credits, an internally
published paper yields 5 credits

Note

Within Microsoft product groups, Writing Secure
Code, Second Edition, is required reading as a
baseline knowledge prerequisite. This book has
also been turned into an instructor-led class
created by Vigilar, Inc. (Vigilar 2005).

166

Measuring Knowledge
On the surface, knowledge measurement seems easy,
but for a company that develops software, it’s actually
a complex subject. It’s complex because it’s hard to
determine what do to with the results. Is the goal
simply to determine whether people can work on
specific portions of the code? What do you do if
someone fails or, worse, fails again and again? Do you
fire them? As you can imagine, there are many legal
issues involved with measuring folks for security
expertise. Then, of course, there is the issue of how to
measure people’s knowledge. Do you measure by way
of an exam immediately after the training, or at some
later date? Is the exam online? Is it an open-book
exam? How do you prevent cheating? Again,
Microsoft is a software company, not a university.

Microsoft does not presently measure employees’
security expertise, but we are constantly looking at
ways to address these issues.

One promising and easy-to-implement way to measure
knowledge acquisition (although not knowledge
retention) is to use an online training session and then,
at various times throughout the course, to ask a series
of short, multiple-choice questions. If the question is
answered correctly, we move to the next stage of the
training material. If not, we inform the student of the
correct solution and move on.

167

Implementing Your Own
In-House Training
It is imperative that you have a baseline security class
focusing on good security and privacy engineering
practice for all people involved in software
development. This is the reason behind the "Security
Basics" class at Microsoft. All engineering personnel
must attend this training session so that we can set a
minimum security baseline. Making people security
experts is not the goal of a class like this. The core
goal is simply to raise awareness and provide
engineers with basic security knowledge, let them
know what’s expected of them, and tell them where
they can go for more security-related and
privacy-related information. This is an important
point: we teach engineers enough so that they know
when they are in trouble and know whom they need to
contact to get help.

Creating Education Materials "On a
Budget"
If, like Microsoft, your organization is not an
educational institution, you should also consider
encouraging security experts to present their
knowledge to your people. But don’t stop there.
Record the session for posterity and place the slide
deck and the video on an easily searchable internal
Web site. A simple Microsoft Office PowerPoint

168

presentation, although useful, is not as beneficial as a
PowerPoint presentation with audio or video from the
instructor. In its simplest form, this could be a
presentation using the Record Narration option with a
microphone attached to the computer. In Office
PowerPoint 2003, you can find the Record Narration
option under the Slide Show menu item, as shown in
Figure 5-1. When a person views the presentation, she
will see the slides and hear the presenter at the same
time.

Figure 5-1. The Record Narration dialog box in Office
PowerPoint 2003.

169

Key Success Factors and
Metrics
There are three main requirements for successful
security education and awareness:

▪ Executive support

▪ Experienced presenters

▪ Ongoing education

Let’s look at each requirement in more detail.

Like all aspects of SDL, executive support is critical,
but gaining executive support for security awareness
and education should not pose much of a challenge.
It’s fair to say that most technology and business
executives understand the importance of security
education as a way to reduce risk to their companies.
But there’s more than just risk at stake. Better-quality
code—and more secure code is better-quality
code—leads to increased user satisfaction and,
possibly, competitive advantage.

The next piece of the puzzle is experienced presenters.
At Microsoft, the presenters are usually people from
the security "trenches" rather than people trained to
teach. The reason is simple: invariably there will be
many questions from the audience, and although the
presenter might not know all the answers, a software
security expert is more likely to know an answer. Of

170

course, we have to balance this with the potential for
an excellent and seasoned security professional to be a
dull presenter! In our experience, it’s better to err on
the side of security expertise.

The third aspect of SDL is ongoing education. Track
who attends the training sessions and when, and tie
this information to the engineer’s annual review.
Ongoing attendance is also a core metric.

Important

100 percent of engineering staff should attend
security training every year.

171

Summary
Education and awareness are critical to creating secure
software. Unfortunately, today’s software engineering
workforce often lacks skilled security professionals,
and there is no end in sight to this dilemma. This
means that the software industry must pick up the
slack and make a point of educating its engineers
about security and privacy issues. Build a security and
privacy curriculum within your company for all
engineers. At a minimum, you should require a basic
security course—or use the course on the companion
disc for this book—for everyone involved in
designing, developing, testing, and documenting your
software. Track security training attendance, and insist
on updated training at least once a year.

172

References

173

Bibliography
[biblio05_01] (Microsoft 2002) Microsoft
Corporation. Bill Gates’s Trustworthy Computing
memo, http://news.com.com/2009-1001-817210.html.
January 2002.

[biblio05_02] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, Second Edition. Redmond, WA: Microsoft
Press, 2003.

[biblio05_03] (Wikipedia 2006a) "Bell-LaPadula
Model," http://en.wikipedia.org/wiki/
Bell-LaPadula_model.

[biblio05_04] (Wikipedia 2006b) "Biba Model,"
http://en.wikipedia.org/wiki/Biba_model.

[biblio05_05] (Saltzer and Schroeder 1975)
Saltzer,J.H., and M.D.Schroeder. "The Protection
of Information in Computer Systems,"
http://www.cs.virginia.edu/~evans/cs551/saltzer/.
April 1975.

[biblio05_06] (Microsoft 2006a) Microsoft
Corporation. "Microsoft Online Privacy Notice
Highlights," http://privacy.msn.com. January 2006.

[biblio05_07] (Microsoft 2006b) Microsoft
E-Learning, Security Catalog,
https://www.microsoftelearning.com/security/.

174

http://www.cs.virginia.edu/~evans/cs551/saltzer/

[biblio05_08] ((ISC)2 2006) CISSP CPE Credit
Requirements, https://www.isc2.org/cgi-bin/
cissp_content.cgi?page=89.

[biblio05_09] (Vigilar 2005) Vigilar, Inc. "Vigilar
Launches ‘Writing Secure Code’ Training
Class for Programmers," http://www.vigilar.com/
press48.html. August 2005.

175

http://www.vigilar.com/press48.html
http://www.vigilar.com/press48.html

Chapter 6. Stage 1: Project
Inception
In this chapter:

Determine Whether the Application Is Covered by SDL

Assign the Security Advisor

Build the Security Leadership Team

Make Sure the Bug-Tracking Process Includes Security
and Privacy Bug Fields

Determine the "Bug Bar"

As a project starts—perhaps it’s a new version,
iteration, or a brand new product—it’s important to get
all the security ducks lined up correctly. From our
experience, a good project start leads to a much
smoother final security review and a more secure
product.

The project inception phase has a number of discrete
and important steps:

▪ Determine Whether the Application Is Covered
by SDL.

▪ Assign the Security Advisor.

176

▪ Build the Security Leadership Team.

▪ Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields.

▪ Determine the "Bug Bar"

Let’s look at each of these steps in detail.

Determine Whether the
Application Is Covered by SDL
The first course of action is to determine whether the
product is covered by SDL. Ultimately, all software
will benefit from the processes described by the SDL,
and managers are always encouraged to follow the
SDL. However, products that meet any of the
following criteria listed must follow this software
development process:

▪ Any product that is commonly used or deployed
within a business—for example, e-mail and
database servers.

▪ Any product that regularly stores, processes, or
communicates personally identifiable information
(PII). Examples include financial, medical, and
sensitive customer information. Because of
various child online protection laws, such as the
Children’s Online Privacy Protection Act
(COPPA 1998), any products or services that
target or are attractive to children are of particular
concern.

177

▪ Any product that regularly touches or listens on
the Internet:

▪ Always online: services provided by a
product that involves a presence on the
Internet—for example, instant messaging
software

▪ Designed to be online: browser or mail
applications that expose Internet
functionality—for example, Web browsers
and e-mail clients

▪ Exposure online: components that are
routinely accessible through other products
that interact with the Internet—for example,
mobile code or games with multiplayer
online support

▪ Any product that automatically downloads
updates.

Note

The SDL applies to both new products and major
updates such as "dot" releases or service packs.

178

Assign the Security Advisor
The next course of action is to nominate a security
person to guide the development team through the
SDL process with the aim of successfully completing
the Final Security Review (FSR). (See Chapter 14, for
more on the FSR.) Historically, Microsoft has referred
to this individual as a Security Advisor.

If your company has a central security team, or an
engineering quality team, it makes sense to nominate
someone from that team to be the security point
person. Specific skills are required to fulfill this role,
however. Following is a sample job description used
within Microsoft:

Do you enjoy probing and analyzing product
security, finding holes in assumptions, and
working with product teams to make our
products as secure as possible for our
customers? Are you interested in a job that
provides incredible opportunities for learning
and visibility? The Secure Windows Initiative
(SWI) team is looking for a stellar PM to
continue to drive the adoption of good security
practices across Microsoft. You will own
working with teams such as Office, Windows,
Visual Studio, or SQL Server to help them
develop secure products from beginning to end
and finally verify the security of each product
before it ships.

179

We are looking for a Program Manager with a
strong technical and security background,
strong cross-group and communication skills,
attention to detail, and solid process skills.
Coding skills are helpful but not required;
security-mindedness is a must.

Candidates should have 3–5 years’ experience
building and shipping software and have solid
PM skills. A Bachelor’s degree in Computer
Science is preferred.

Come and help the company ship secure
products to customers.

We have noticed that although deep security skills are
important, it’s even more vital that the Security
Advisor have good project and process management
skills. Having both security and project management
skills is a bonus. Having neither skill is obviously a
disqualifier.

Best Practices

Large software development houses should assign
similar products to the same security point person
so that the Security Advisor can pass on lessons
learned from one group to other groups.

The tasks of the security advisor include:

180

▪ Acting as a point of contact between the
development team and the security team.

▪ Holding an SDL kick-off meeting for the
development team.

▪ Holding design and threat-model reviews with
the development team.

▪ Analyzing and triaging security-related and
privacy-related bugs.

▪ Acting as a security sounding board for the
development team.

▪ Preparing the development team for the FSR.

▪ Working with the reactive security team.

We want to delve briefly into each of these areas. But
before we do, do not lose track of the high-level goal
of the security advisor: it is to help product teams
become self-sufficient and "good at security."

Act as a Point of Contact Between
the Development Team and the
Security Team
Before the creation of the SDL process, security
communication between product groups and the
security team was unstructured and prone to
miscommunication. To remedy this, the Security
Advisor acts as the central point of contact for the
development team. Most notably, a person is selected

181

from the development group to be the security point
person for the development group, and that person and
the Security Advisor act as a conduit for security
information. Of course, there is nothing stopping
anyone on the development team from communicating
with the Security Advisor, or vice versa, but it’s
important that the advisor and the security point
person are made aware of all security- and
privacy-related communication.

Best Practices

People from different development groups within
Microsoft often e-mail us, asking security
questions. When this happens, we make a point of
including the Security Advisor on the reply.

182

Holding an SDL Kick-Off Meeting for
the Development Team
Before the development project gets fully underway,
the Security Advisor presents the goals of the SDL and
the key points about the SDL process to the
engineering staff. Often this is simply a one-hour
presentation. It’s imperative that, at a minimum, the
development, test, and program management
leadership staff attend. It’s also important that
management and the people building the schedule
understand that the SDL tasks and deliverables must
be built into the development schedule.

Important

It’s important that SDL tasks and deliverables be
built into the software development schedule.

183

Holding Design and Threat Model
Reviews with the Development
Team
At the point during the design phase when the designs
are nearly complete, the Security Advisor should sit
down with the development team to discuss the design
and system architecture. At this stage, the Security
Advisor will critique the design to see if she can find
security issues within it. For example, the Security
Advisor will make sure that:

▪ The application has a low attack surface.

▪ The application uses the appropriate development
best practices.

▪ The application follows secure design best
practices.

▪ The threat models are complete and reflect how
the system will defend itself.

▪ There is appropriate testing and test coverage.

Attack-surface analysis and reduction and secure
design best practices are both covered in Chapter 7;
appropriate secure development best practices are
covered in Chapter 11, and Chapter 12; and threat
models are discussed in Chapter 9.

184

Analyzing and Triaging
Security-Related and
Privacy-Related Bugs
Invariably, security and privacy bugs will be detected
in the product during development, and such bugs
must be triaged accordingly. Reviewing these kinds of
bugs requires a great deal of expertise to make sure the
correct course of action is taken for each. Some may
be fixed with code or design changes; others might not
be fixed at all because the risk is very low and the
amount of work required to perform a correct fix may
be large. Whatever the outcome, it’s important that the
Security Advisor review the list of unfixed security
and privacy bugs.

185

Acting as a Security Sounding
Board for the Development Team
The Security Advisor should address security and
privacy questions and ideas as they arise from the
product group. Indeed, the advisor should encourage
this kind of discourse and have ideas evaluated and
verified as soon as possible. At Microsoft, this process
is usually handled in the manner shown in Figure 6-1
(on the next page), but many software development
houses may not have the luxury of a central, dedicated
security team. In this case, the advisor will probably
be the security contact and problem solver for all
security issues.

Figure 6-1. The communication relationship between
the Security Advisor, the development team contact, and

the security leadership team.

186

Security Advisors also serve as great sources of
security wisdom and education for the software
development team.

187

Preparing the Development Team
for the Final Security Review
Before a product ships, it must successfully complete
an FSR as defined in Chapter 14. An important task
for the Security Advisor is to make sure that all the
required SDL tasks are completed so that the FSR
goes smoothly. You don’t want surprises at the FSR
stage because they could hold up the final product
release to customers.

188

Working with the Reactive Security
Team
If an externally reported security bug is found in a
product you create, it saves a great deal of time for the
Security Advisor to be in the loop when triaging the
issue because she will have a great deal of background
knowledge that may aid in determining the most
appropriate way to fix the issue.

189

Build the Security Leadership
Team
In all software development endeavors, there is a
person or team that leads the development process. At
Microsoft, there is a central project management team
driving the day-to-day coordination of team
communication, scheduling, and features. This team
should also handle security leadership for the project.
The team’s tasks include

▪ Regular communication, usually by e-mail, to the
development team about security and privacy bug
counts.

▪ Communication of security and privacy policy
updates.

This role is different from the development team
contact; the development team security contact is
technical in nature, whereas the security leadership
team sets policy and communicates status to the team.

Here’s a real example of how this communication
system works. In late 2004, I (Michael) learned of a
security bug that affected the Java programming
language from Sun Microsystems (Huwig 2004). To
my surprise, it was an integer overflow problem. As I
dug deeper, I found that this bug could affect C# or
Microsoft Visual Basic .NET code. So I spoke to the
Security Advisor for the Microsoft .NET Framework

190

about the issue, and he then talked to both the security
contact on the .NET Framework team and the .NET
Framework security leadership team. Between them,
they decided that this kind of error could indeed affect
managed code and should be fixed prior to shipping
the .NET Framework 2.0. The .NET Framework
security contact then created some prescriptive
guidance, and the leadership team made the entire
product team aware that this guidance must be adhered
to. Three bugs of this nature were found and
eradicated from the code base before the product
shipped.

This may seem like a lot of communication
overhead—and for some software development teams
it certainly is—but for larger software projects it
works well because there is a combination of security
and privacy technical expertise (the security team,
Security Advisor, and security contact) and policy
setting to make sure that it happens. Figure 6-1 shows
the relationship between these roles discussed
previously.

191

Make Sure the Bug-Tracking
Process Includes Security and
Privacy Bug Fields
It is critically important that security and privacy bugs
be tracked correctly in your bug-tracking database.
Even more important, such bugs must be tracked in a
consistent manner. Here are the SDL-required
bug-tracking fields that should be added to your
bug-tracking software:

▪ Security/Privacy Bug Effect

▪ Security/Privacy Bug Cause

The Security/Privacy Bug Effect field should then
have these predefined values:

▪ Not a Security Bug

▪ Spoofing

▪ Tampering

▪ Repudiation

▪ Information Disclosure

▪ Information Disclosure (Privacy)

▪ Denial of Service

▪ Elevation of Privilege

▪ Attack Surface Reduction

192

Note that Attack Surface Reduction is akin to defense
in depth and is not necessarily a true security bug.
Rather, it’s a bug that identifies a task that should be
triaged like any other security or privacy bug.

Note

Defense in depth employs multiple security
defenses to help mitigate the risk of one defense
failing.

Information disclosure threats can also be privacy
threats if the data exposed is personally identifiable or
confidential data, so there is a separate bug category to
make it easy to search for privacy bugs. Privacy issues
are almost always high-impact bugs, and this should
be reflected in the severity rating of the bug.

The Security/Privacy Bug Cause field should then
have these predefined values:

▪ Not a Security Bug

▪ Buffer Overflow or Underflow

▪ Arithmetic Error (for example, integer overflow)

▪ SQL/Script Injection

▪ Directory Traversal

▪ Race Condition

193

▪ Cross-Site Scripting

▪ Cryptographic Weakness

▪ Weak Authentication

▪ Weak Authorization/Inappropriate ACL

▪ Ineffective Secret Hiding

▪ Resource Consumption (DoS)

▪ Incorrect/No Error Messages

▪ Incorrect/No Pathname Canonicalization

▪ Other

194

Determine the "Bug Bar"
At the outset, you should decide what types of bugs
you will fix within the project development lifecycle,
including security and privacy bugs. Defining the bar
up front reduces confusion about what should be fixed,
what should be mitigated, and what can be left
unfixed. The SDL mandates that critical, important,
and moderate security and privacy bugs be fixed prior
to releasing the product. You can get a feel for the
relative risk rankings by looking at Figure 9-6 through
Figure 9-10 in Chapter 9.

195

Summary
Having a Security Advisor, security contact, and
security leadership team in place as the project begins
can make the process of building more secure software
easier because expert security advice is available via a
defined channel, and security communication flows
well. More important, this level of communication
makes it harder for important data to fall between the
cracks.

Setting the bug-tracking system and bug bar at the
outset also helps to streamline the process by
establishing a consistent and well-understood bug
standard. This reduces friction during development by
defining the nomenclature and what will and will not
be fixed prior to product release.

196

References

197

Bibliography
[biblio06_01] (COPPA 1998) U.S. Federal
Government. "The Children’s Online Privacy
Protection Act of 1998," http://www.ftc.gov/ogc/
coppa1.htm. October 1998.

[biblio06_02] (Huwig 2004) Huwig,Kurt. "DoS
(Denial of Service) Against Java JNDI/DNS,"
http://archives.neohapsis.com/archives/bugtraq/
2004-11/0092.html. Neohapsis, November 2004.

198

http://www.ftc.gov/ogc/coppa1.htm
http://www.ftc.gov/ogc/coppa1.htm

Chapter 7. Stage 2: Define and
Follow Design Best Practices
In this chapter:

Common Secure-Design Principles

Attack Surface Analysis and Attack Surface Reduction

The software industry abounds with security software
coding best practices (few of which are followed), but
there is a dearth of pragmatic secure-design guidance.
Microsoft has spent considerable time working to
make secure design accessible to the average
non-security expert. Saltzer and Schroeder’s classic
paper "The Protection of Information in Computer
Systems" (Saltzer and Schroeder 1975, Computer
Security Resource Center 2002) offers many
time-tested secure-design principles that apply today
as much as they did in 1975. Secure design is
necessary for all computer software, from operating
systems to online computer games (Yan and Randell
2005). This chapter offers brief ideas for applying
secure-design principles to modern application
software.

Extensive coverage of these principles is beyond the
scope of this book; for more information, please refer
to one or more of the many references (Anderson

199

2001, Bishop 2002, Howard and LeBlanc 2003) on the
subject.

Internet Engineering Task Force (IETF) requests for
comments (RFCs) must also include security
information. Rescorla and Korver’s "Guidelines for
Writing RFC Text on Security Considerations"
(Rescorla and Korver 2003) offers some ideas on how
to think about the security implications of software,
firmware, and hardware features.

Best Practices

When you expect engineering staff to execute on
security-related initiatives or to adhere to a
security or privacy policy, it is imperative that you
provide prescriptive guidance about how to
achieve your goals. Don’t just say, "This is bad."
Instead, say, "This is the way you should do it." In
our experience, engineering staff are happy to
adhere to security and privacy policies as long as
you explain how to attain the desired objectives.

All products should follow appropriate secure-design
best practices. These are not the same as threat
modeling; threat modeling and secure design are
different but complementary. Threat modeling
determines appropriate mitigations based on threats to
the system, and secure design best practices focus on

200

"good security hygiene" within the application. For
example, if you identify a threat to a system and then
select mitigations, your mitigations could be
compromised if the application’s design is insecure.
Secure-design principles can help prevent such
potential errors.

Another important best practice of the design phase is
reducing a software product’s attack surface, which is
the sum of all code and functionality accessible to
users and potential attackers. For example, a
Transmission Control Protocol (TCP) socket opened
by an application is part of the application’s attack
surface. Attack surface might appear to be an
operating system characteristic only, but all
applications have it, even if some applications
measure it differently. A goal of any product should be
to reduce the attack surface.

Note

Remember the two major goals for the Security
Development Lifecycle (SDL): reduce the number
of vulnerabilities in the software as you develop
it, and reduce the severity of any undiscovered
security bugs. The first principle is the high-level
goal of Secure by Design, and the second is the
high-level goal of Secure by Default. Securing the

201

design and the code is paramount, but mistakes
will be made, and research into new
vulnerabilities that may affect the software
continues long after a product has been shipped to
customers. It is therefore imperative that the
product have a minimal attack surface to reduce
the severity of any security bugs in the code. This
is what secure by default is all about; secure by
design is about getting things right, and secure by
default is recognizing you never will!

Common Secure-Design
Principles
Of the numerous secure-design principles, the classic
and most quoted are those in the list created by Saltzer
and Schroeder in their seminal paper, "The Protection
of Information in Computer Systems." These
principles, although written in 1975, are still valid
today and apply especially to security software:

▪ Economy of mechanism. Keep the code and
design simple and small. The more complex the
software, the greater the likelihood of bugs in the
code. When the code is small, less can go wrong.

▪ Fail-safe defaults. The default action for any
request should be to deny the action. Thus, if the
user request fails, the system remains secure.

202

▪ Complete mediation. Every access to every
protected object should be validated. Follow the
best practice of performing the check as close to
the protected object as possible. For example, if
your Web-based application protects a file,
operating system file system access control lists
(ACLs) are a more robust protection mechanism
than an access check within your Web-based
code.

▪ Open design. Open design, as opposed to
"security through obscurity," suggests that
designs should not be secret. The most
well-known embodiment of this principle is
Kerchoff’s Law, which applied to cryptographic
designs states, "The system should not depend on
secrecy, and it should be able to fall into enemy
hands without disadvantage" (Wikipedia 2006).

▪ Separation of privilege. Do not permit an
operation based on one condition. Examples
include two-factor authentication, and, at a higher
level, separation of duties.

▪ Least privilege. Operate with the lowest level of
privilege necessary to perform the required tasks.
This subject is covered in more detail later in this
chapter.

▪ Least common mechanism. Minimize shared
resources such as files and variables. You can
more easily control individual processes
manipulating private files than two processes

203

manipulating the same file. Furthermore, code
that uses only local variables is more robust and
maintainable than code that uses global variables.

▪ Psychological acceptability. Is your secured
product easy to use? If not, it won’t be used. You
should always ask yourself, "Can I implement
this system in a way that makes the product easier
to use?" Never forget about your users.
Psychological acceptability requires a great deal
of skill and user interface design expertise.

Caution

Psychological acceptability is hard to get right; if
a very secure system is difficult to use, users
might abandon the security features of the
product. As we developed Microsoft Windows XP
SP2, we carefully balanced security, the main
focus of the service pack; usability; and backward
compatibility. We recognized, for example, that if
the firewall prevented too many applications from
working or if some defenses made the system
hard to use, users would simply disable the
defenses, making their systems more susceptible
to successful attack and rendering all the
protective work useless. A key lesson is to be
wary of security for the sake of security.

204

Various resources address secure design; we urge you
to consider the references listed at the end of this
chapter for further study.

A product’s security features do not necessarily secure
the product from attack. Any feature, whether or not
it’s a security feature, must be implemented as a
"secure feature" and be engineered correctly, with
appropriate attention to security and quality. All input
must be rigorously validated for correctness.

Best Practices

Remember, even the most secure design is
rendered pointless by a low-quality and insecure
implementation, regardless of the number of
security features the product employs.

"Bolting on" security or privacy later in the schedule,
or after the features are complete, is not an option. The
only way to deliver robust security and privacy
consistently to customers is by including those
qualities in the application during the design phase.

Complexity and Security

We want to spend a few moments on
complexity—a critically important part of secure

205

design that is covered in Saltzer and Schroeder’s
"Economy of Mechanism." All things being equal,
complex software is likely to be less secure than
simpler software, so you should always strive to
produce "simple enough" software. Numerous
methods that measure complexity can help
immensely in your code reviews. Make yourself
aware of some of these complexity metrics, such
as McCabe’s cyclomatic complexity (McCabe and
Watson 1994, VanDoren 2000) and Halstead’s
complexity (VanDoren 1997).

206

Attack Surface Analysis and
Attack Surface Reduction
Any useful application employs code accessible to end
users and attackers alike. Code almost always has
bugs, some of which are security related. Accessible
code might be vulnerable to malicious users.

Note

The inspiration for Attack Surface Analysis
(ASA) and Attack Surface Reduction (ASR)
comes from Saltzer and Schroeder’s principles,
most notably, least privilege and economy of
mechanism.

Attack Surface Analysis and Attack Surface Reduction
are all about understanding what constitutes the attack
surface of your application and how you can
effectively reduce it to prevent an attacker from taking
advantage of potentially defective code. The software
industry worries a lot about improving code quality.
But although code quality is exceptionally important,
new classes of vulnerabilities may affect even the best
code, so we cannot focus exclusively on getting the
code right. Even if your code happens to be perfect,
it’s only perfect by today’s standards—a snapshot of

207

best practices at development time. Yet the
vulnerability research landscape is constantly
evolving. Five or so years ago, integer overflow
vulnerabilities were almost unknown; today they are
an extremely common attack.

Best Practices

The software industry needs to change its outlook
from trying to achieve code perfection to
recognizing that code will always have security
bugs. We must therefore focus on extra defense
mechanisms. But of course, we should never stop
trying to achieve software perfection.

The attack surface of a software product is the union
of code, interfaces, services, and protocols available to
all users, especially what is accessible by
unauthenticated or remote users. ASA is the process of
enumerating all the interfaces and protocols and
executing code. The rest of this chapter will give you
an idea of elements you need to consider during the
ASR phase. Code that is part of the attack surface is
more vulnerable to attack. For example, the code
behind a remotely accessible socket is more at risk of
attack than, say, the code behind a closed socket.

208

How ASA and Threat Modeling Relate

ASA focuses on reducing the amount of code
accessible to untrusted users. You can usually
achieve this reduction by understanding the
system’s entry points and the trust levels required
to access them. Threat modeling can help feed the
ASA process and hence the ASR process because
key components of the threat model include the
entry points and trust levels.

The core tenet of ASR is that all code has a nonzero
likelihood of containing one or more vulnerabilities.
Some vulnerabilities result in customer compromises.
Therefore, the only way to avoid customer
compromises is to reduce code usage to zero. ASR
compromises between perfect safety and unmitigated
risk by minimizing code exposed to untrusted users.
Code quality and ASR can help produce software that
is more secure; striving to write perfect code alone
will not.

Best Practices

Code with a large attack surface—that is, a large
amount of code accessible to untrusted
users—must be extremely high-quality code. It
must be extensively hand-reviewed and tested.

209

At a high level, ASR focuses on:

▪ Reducing the amount of code that executes by
default.

▪ Restricting the scope of who can access the code.

▪ Restricting the scope of which identities can
access code.

▪ Reducing the privilege of the code.

Figure 7-1 shows the steps you should follow when
considering the attack surface of your application.

210

211

Figure 7-1. Follow these steps to reduce attack surface.

Step 1: Is This Feature Really That
Important?
The first task is incredibly important. For each of the
product’s features (especially services, daemons,
mobile code such as ActiveX controls and Java
applets, running applications, and so on), you should
ask, "Is this feature needed by at least 80 percent of
our users?" If the answer is no, the feature should be
turned off, not installed, or disabled by default.

A good example of this kind of ASR is the Internet
Information Services (IIS) 6.0 Web server in
Microsoft Windows Server 2003. It is not installed by
default, unlike IIS 5.0 in Microsoft Windows 2000,
which is installed by default.

Important

Disabling a feature by default does not mean that
you can ship a poor-quality feature. Disabling a
feature will reduce, not prevent, the likelihood of
many users being impacted by a potential bug.

Next, you should consider all the sub-features that
make up the overall feature. This is probably best

212

explained through example. A Web server, such as
Apache or IIS, ships with a lot more functionality than
just HTTP 1.0 or HTTP 1.1 processing. These servers
can parse and respond to

▪ Various HTTP verbs (GET, POST, HEAD, and
so on).

▪ WebDAV requests (PROPFIND, PROPPATCH,
SEARCH, and so on).

▪ SOAP Web service requests (all exposed SOAP
methods).

▪ Requests to Java Server (.jsp files), CGI (.pl or
.cgi), PHP (.php), ASP (.asp), or ASP.NET
(.aspx) applications.

▪ Requests to ISAPI filters and applications or
Apache modules (such as mod_rewrite).

▪ SSL and non-SSL requests (including SSL2,
SSL3, PCT, and TLS variants).

Remember, each of the preceding sub-features is a
separate code path, and that code probably has security
bugs. Hence, you have to determine whether it makes
sense to enable all this micro-functionality by default.
Again, IIS 6.0 is a great example of micro-ASR; when
the Web server is enabled, it responds only to requests
for static files, and that code path is relatively small. If
you want to enable, say, WebDAV, you must opt in
for that functionality. Two years after the release of
IIS 6.0, Microsoft had issued only one security

213

bulletin for the Web server; the bug was a
denial-of-service vulnerability in WebDAV, which
was shared with IIS 5.0. The bulletin MS04-030,
"Vulnerability in WebDAV XML Message Handler
Could Lead to a Denial of Service" (Microsoft 2004),
is an update rated as important for Windows 2000
users and moderate for Microsoft Windows Server
2003 users because in Windows 2000, WebDAV is
enabled by default, and in Windows Server 2003, it is
an "opt-in" feature and hence is less severe.

214

Step 2: Who Needs Access to the
Functionality and from Where?
A viable application must have some useful
functionality enabled by default, so the next step is to
determine who can access the code and from where.
As you see in Figure 7-2, code that is accessible
remotely by anonymous users has a larger attack
surface than code that is accessible only to local
administrators.

Figure 7-2. Accessibility increases attack surface.

What follows is a good example of reducing the attack
surface of a network-facing component. Windows
Server 2003 users were unaffected by the Sasser worm
(Microsoft 2005a) even though the code included the
vulnerable security bug because the network endpoint
that the worm attacked was accessible only to
administrators seated at the keyboard. Microsoft

215

developers had introduced an explicit "local
administrator only" check in the remote procedure call
(RPC) code during design reviews of the product. In
Windows 2000 and Windows XP, this network
interface was remotely accessible to anonymous users.
Likewise, the Zotob worm did not affect Windows XP
SP2 users (Microsoft 2005b) because in Windows XP
SP2 and later versions of Windows, all RPC traffic
must be authenticated before full communication can
occur. Moreover, because malicious code such as
Zotob is not authenticated (there is no valid user name
and password associated with the payload), the attack
could not penetrate to the vulnerable code. Lessons
learned from the Blaster worm prompted the change in
RPC attack surface in Windows XP SP2. Also,
Windows XP SP2 explicitly enabled the firewall by
default, blocking the RPC ports at the computer’s IP
network layer. This is a great example of multilayer
defenses.

You should consider each piece of functionality
individually in your application to determine who
needs to access the code by default (anonymous, user,
or a specific group of users or administrators) and
from where they should access it (remote, remote but
only from a specific set of addresses or a subnet,
site-local or link-local [IPv6], or local-only).

You can require valid user account access by using
authentication and authorization techniques. Use
techniques provided at the lowest possible level of
your system, such as those in the operating system or

216

those in a class library your application relies on, such
as the Microsoft .NET Framework or the Java
Runtime libraries.

Caution

Do not create your own authentication or
authorization mechanisms unless the underlying
mechanisms absolutely do not provide what you
need. And if you still think you need to create
your own mechanisms, think again!

You can often restrict network accessibility by using a
firewall, but you should consider adding another layer
of defense in case the firewall is disabled.

Important

Never depend on a firewall as your sole defense.
Firewalls are exceptionally good perimeter
defenses, but too often they are turned off or left
open. How many stories have you heard of users
being told to turn off their firewalls because an
application didn’t work correctly? The firewall is
always the first suspect.

217

Perhaps the better way to restrict network accessibility
is by a configuration switch that defaults to the local
machine, the local subnet (such as 192.168.x.x,
10.x.x.x, or an internal corporate address), or site-local
or link-local for IPv6 networks. You can then set
network accessibility to "no restrictions" for users or
environments that require this added level of
connectivity.

Tip

In .NET code, you can use the
IPAddress.IsLoopback function to determine
whether a connection is from the local machine
and whether it works with IPv4 and IPv6.

Best Practices

If your application is to analyze IP addresses,
make sure the code can parse IPv6 as well as IPv4
addresses; Microsoft has a tool named checkv4
that can check WinSock C/C++ code for
IPv4-specific dependencies (Microsoft 2006).

218

Step 3: Reduce Privilege
The last step in reducing attack surface is to ascertain
the privilege level under which the code operates. This
applies mainly to long-running processes such as
Windows services or *nix daemon processes.
Processes that are exploited when running in a Local
System or root context can create catastrophic failure
because the exploit code will also run in the same
context, and these accounts have access to all
resources on the compromised computer. It is
therefore imperative that you run code with just
enough privilege to get the job done, and no more.

In Windows, "privilege" has two aspects that must be
evaluated: the privileges associated with the account
(Microsoft 2005c) and the group membership
associated with the account. Privileges allow an
account to do computer-wide tasks such as debug an
application or backup files. Sun Corporation’s Solaris
10 operating system has a similar model (Rich 2005),
as do POSIX capabilities in some versions of Linux
(Solar and Mondi 2005).

In Windows, you can create an account that has just
the privileges you want and have your service run
under that account. Another way to solve the
least-privilege problem is to run the service under a
well-known account, such as Network Service, and
then drop the privileges you don’t need by calling
AdjustTokenPrivileges(...,SE_PRIVILEGE_REMOVED,...)

219

on application startup. Windows Vista goes one step
further by allowing you to define only the privileges
you need by calling
ChangeServiceConfig2(...,SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO,...).

As for group membership, the most dangerous group
is the Administrators group, and the only way to
exclude this security identifier from the application
token is to run the application as a non-administrator
in the first place. In *nix, you can create a special
group for the application and use setgid
<groupname>.

Services and Low Privilege
Rather than running your Windows services as Local
System (also referred to as SYSTEM), you should use
less-risky service accounts such as Network Service or
Local Service unless there is a very good reason to run
under the Local System account.

Sometimes your service simply must run as the Local
System account because the code performs some form
of system-wide management or security-related tasks.
But you can still run with lower privilege by splitting
the application into more than one executable process
and running only the management process with
elevated privileges while the user-facing code runs
with a lower privilege. Apache and IIS 6.0 use this
model. In the case of Apache on *nix, the first httpd
process starts up as root, and its role is to start, stop,
and control other httpd process and open the HTTP
ports. The spawned processes run with lower-privilege

220

accounts such as the "nobody" or "apache" account. In
the case of IIS6, the main administrative service runs
as SYSTEM, but the main processes that handle user
requests run as the much-lower-privilege Network
Service account. The high-privilege administrator
processes don’t handle any user requests, and this
decreases the potential threat to the high-privilege
code. Figure 7-3 gives you an idea of how this pattern
manifests itself.

Figure 7-3. Split an application into multiple processes
based on privilege. The low-privilege processes handle
untrusted user requests, and the high-privilege process

handles administrative tasks.

221

More Attack Surface Elements
Depending on the operating system or application you
use, other elements of attack surface should be
investigated. The following elements are some of the
most important.

UDP vs. TCP
User Datagram Protocol (UDP) has a higher attack
surface than TCP because the source IP address is
easily spoofed. TCP performs a full three-way
handshake to verify the address and port of the caller
and callee, whereas UDP is a datagram "fire and
forget" protocol. We’re not saying you should remove
UDP support from your application; the UDP protocol
simply increases the attack surface of your product.

Note

In Windows XP SP2 and later versions, all RPC
datagram protocols are disabled by default to
reduce attack surface.

222

Weak Permissions vs. Strong Permissions
A weak permission or ACL on an operating system
object can render the computer vulnerable. In general,
the default permissions on Windows objects are good
enough, but you should always review the ACL your
setup code explicitly sets on an object to make sure it
offers appropriate defense. The same rule applies to
*nix; you should review your code that sets
permissions to make sure untrusted users do not have
unnecessary access to the object.

An example of a weak ACL includes an ACL in a
device driver that allows a normal user to overwrite
the valid driver with rogue software. When the
operating system loads the driver, the user’s code, not
the valid device driver, is loaded into kernel mode.
This is an example of a local privilege-elevation bug.

223

.NET Code vs. ActiveX Code
The Microsoft .NET technology was designed from
the ground up to support fine-grained permissions
enforced by a central run-time policy engine. ActiveX
controls have no such restrictions; hence, ActiveX
controls have a larger attack surface. Sometimes an
ActiveX control is the most appropriate solution to a
problem, but not all the time. Always consider
managed run-time technologies first. If they’re not
appropriate, consider ActiveX.

224

ActiveX "Safe for Scripting"
If you absolutely must create an ActiveX control,
make sure it’s not marked safe for scripting unless it’s
absolutely safe to call the control from untrusted
mobile code such as JavaScript running in a Web
browser. ActiveX controls that are marked safe for
scripting have a larger attack surface than ActiveX
controls that are not marked this way because these
controls are accessible to low-trust code. One
infamous example is an ActiveX control used to
uninstall the XCP digital rights management (DRM)
software written by First 4 Internet and distributed on
some Sony BMG audio CDs. The uninstall control is
marked safe for scripting and supports several
potentially dangerous methods, including
RebootMachine, InstallUpdate, and IsAdministrator.

225

ActiveX SiteLocked Controls
Web sites can render many forms of mobile code from
HTML pages, and in many cases, mobile code that
resides on a computer can be called by any Web page,
including Web pages from malicious Web sites.
ActiveX can limit which Web sites can call a control
named SiteLocking (Microsoft 2002), which enables
an ActiveX developer to restrict access so that the
control is accessible only from a predetermined list of
domains. This limits the ability of Web page authors
to reuse the control for malicious purposes. You can
also use the SiteLock template to make a control that
behaves differently in different domains. The template
consolidates domain checking into a single shared
library that makes the ActiveX much more secure and
much easier to fix when a problem arises.

A SiteLocked ActiveX control has a smaller attack
surface than a non-SiteLocked control because the
number of domains that can access the control is
smaller.

226

Managed Code AllowPartiallyTrustedCallers
Attribute
Strong-named assemblies marked with the
AllowPartiallyTrustedCallers attribute (APTCA) can
be called by code that is not fully trusted, such as code
running from the Internet.

Note

A strong name consists of the assembly’s
identity—its text name, version, and culture
information—plus a public key and a digital
signature.

You should mark your strong-named assembly with
the APTCA only when your code must categorically
be called from non-Full Trust code. Because code
marked with APTCA can be called by less-trusted
code, APTCA increases the attack surface of the code.

Table 7-1 lists attributes of an application that
contribute to larger or smaller attack surfaces.

Table 7-1. Relative Attack Surface Rankings

227

Higher Attack
Surface

Lower Attack Surface

Feature running
by default

Feature not running by default

Open network
connection

Closed network connection

Listening for
UDP and TCP
traffic

Listening only for TCP traffic

Anonymous
access

Authenticated user access

Authenticated
user access

Administrator access (be careful not to
make too much code admin-only
because this can start violating the
principle of least privilege)

Internet access Subnet, link-local, or site-local access

Subnet,
link-local, or
site-local access

Local machine access

Code running
with
Administrator,

Code running with Network Service,
Local Service, or custom low-privilege
account

228

Higher Attack
Surface

Lower Attack Surface

Local System, or
root privileges

Weak object
permissions

Strong object permissions

ActiveX control .NET code

ActiveX control
marked safe for
scripting

ActiveX control not marked safe for
scripting

Non-SiteLocked
ActiveX control

SiteLocked ActiveX control

Table 7-2 shows examples of how Microsoft has
reduced the attack surface of some commonly used
products.

Table 7-2. Attack Surface Reduction in Some
Microsoft Products

229

Product Attack Surface
Reduction Step

Example of.
. .

Microsoft
Office
2003

Do not install various file
format filters

Reducing
running code

Run by default only
signed and trusted macros

Reducing
Office code
paths to
trusted code

Microsoft
Exchange
Server
2003

Turn off POP, IMAP, and
NNTP by default

Reducing
running code

Allow only trusted users
to create root public
folders

Strong
permissions

Disable many less-used
RPC interfaces

Reducing
running code

Microsoft
Visual
Studio
2005

Microsoft SQL Server
Express allows only local
connections by default

Reducing
network
accessibility

230

Product Attack Surface
Reduction Step

Example of.
. .

Web server allows local
connections by default

Reducing
network
accessibility

ASP.NET runs as a
non-admin account

Least
privilege

Web services reject HTTP
GET requests

Reducing
running code

Debugging requires group
membership

Strong
permissions

Windows
XP SP2

All RPC communication
must be authenticated

Strong
permissions

Turn on firewall by
default

Reducing
network
accessibility

Disable some services (for
example, NetDDE)

Reducing
running code

No longer run some
services as Local System
(for example, RPC)

Least
privilege

231

Product Attack Surface
Reduction Step

Example of.
. .

SQL
Server
2005

Main SQL Server process
runs as Network Service

Least
privilege

Disable xp_cmdshell Reducing
running code

Disable .NET common
language runtime

Reducing
running code

Disable COM integration Reducing
running code

Disable ad hoc remote
queries

Reducing
running code

Developers have taken SQL Server 2005 one step
further than most products, providing a small tool to
determine which functionality is enabled or disabled
by default and which networking protocols can be
used. Figure 7-4 and Figure 7-5 show the SQL Server
2005 Surface Area Configuration tool.

232

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch07s02.html#sql_server_2005_can_reduce_network_acces

Figure 7-4. SQL Server 2005 can reduce features.

233

Figure 7-5. SQL Server 2005 can reduce network
access.

Important

Attack Surface Reduction is as important as
getting the code right because you will never get
the code perfect!

Best Practices

Reduce attack surface early; do not wait until the
product is nearly complete before you think about
how you’ll reduce the amount of code exposed by
default to untrusted users.

We finish this section with a very important point.
Personal firewalls, or firewalls installed on individual
computers, are here to stay regardless of the operating
system installed on the computer. Do not simply
punch arbitrary holes in the firewall, and certainly do
not tell users to turn the firewall off to run your
application, even if the user’s enterprise has a
perimeter firewall. This is especially true for portable
computers, which are often used outside the defenses

234

offered by the corporate firewall. Build your
application with an understanding that the machine on
which it will run probably has a firewall installed, and
that firewall should not be disabled.

235

Summary
In recent years, a lot of attention has been paid to
secure-coding best practices and much less to
secure-design principles. The SDL mandates that
engineers spend time in the design phase thinking
about the security of features and implementing secure
designs. It’s important that you learn the
well-respected secure-design principles by reviewing
and learning from some of the references in the
following section.

Attack Surface Analysis is just as important as trying
to secure the code because you will never secure the
code 100 percent—you cannot predict the future, and
humans make mistakes. The product you ship
embodies a subset of the security best practices of the
day, yet software security research continues.
Document your attack surface, and aim to reduce it as
much as is consistent with a usable product.

236

References

237

Bibliography
[biblio07_01] (Saltzer and Schroeder 1975)
Saltzer,JeromeH., and MichaelD.Schroeder. "The
Protection of Information in Computer
Systems," http://web.mit.edu/Saltzer/www/
publications/protection/index.html. 1975.

[biblio07_02] (Computer Security Resource Center
2002) "Early Computer Security Papers, Part
I," http://csrc.nist.gov/publications/history/index.html.
June 2002.

[biblio07_03] (Yan and Randell 2005) Yan,J., and
B.Randell. "Security in Computer Games: From
Pong to Online Poker," http://www.cs.ncl.ac.uk/
research/pubs/authors/byType.php?id=408. February
2005.

[biblio07_04] (Anderson 2001) Anderson,Ross.
Security Engineering: A Guide to Building
Dependable Distributed Systems. New York, NY:
John Wiley & Sons, 2001.

[biblio07_05] (Bishop 2002) Bishop,Matt. Computer
Security: Art and Science. Boston, MA:
Addison-Wesley, 2002.

[biblio07_06] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, Second Edition. Redmond, WA: Microsoft
Press, 2003.

238

http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://www.cs.ncl.ac.uk/research/pubs/authors/byType.php?id=408
http://www.cs.ncl.ac.uk/research/pubs/authors/byType.php?id=408

[biblio07_07] (Rescorla and Korver 2003)
Rescorla,E., and B.Korver. "Guidelines for Writing
RFC Text on Security Considerations,"
ftp://ftp.rfc-editor.org/in-notes/rfc3552.txt. RFC 3552,
July 2003.

[biblio07_08] (Wikipedia 2006) "Kerchoff’s Law,"
http://en.wikipedia.org/wiki/Kerchoffs_law.

[biblio07_09] (McCabe and Watson 1994)
McCabe,ThomasJ., and ArthurH.Watson. "Software
Complexity," http://www.stsc.hill.af.mil/crosstalk/
1994/12/xt94d12b.asp. Crosstalk, December 1994.

[biblio07_10] (VanDoren 2000) VanDoren,Edmond.
"Cyclomatic Complexity,"
http://www.sei.cmu.edu/str/descriptions/
cyclomatic.html. July 2000.

[biblio07_11] (VanDoren 1997) VanDoren,Edmond.
"Halstead Complexity Measures,"
http://www.sei.cmu.edu/str/descriptions/halstead.html.
January 1997.

[biblio07_12] (Microsoft 2004) Microsoft Security
Bulletin MS04-030. "Vulnerability in WebDAV
XML Message Handler Could Lead to a Denial
of Service," http://www.microsoft.com/technet/
security/bulletin/ms04-030.mspx. October 2004.

[biblio07_13] (Microsoft 2005a) "Malicious
Software Encyclopedia: Win32/Sasser,"
http://www.microsoft.com/security/encyclopedia/
details.aspx?name=Win32%2fSasser. January 2005.

239

http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp
http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html
http://www.sei.cmu.edu/str/descriptions/halstead.html
http://www.microsoft.com/technet/security/bulletin/ms04-030.mspx
http://www.microsoft.com/technet/security/bulletin/ms04-030.mspx
http://www.microsoft.com/security/encyclopedia/details.aspx?name=Win32%2fSasser
http://www.microsoft.com/security/encyclopedia/details.aspx?name=Win32%2fSasser

[biblio07_14] (Microsoft 2005b) "Malicious
Software Encyclopedia: Win32/Zotob,"
http://www.microsoft.com/security/encyclopedia/
details.aspx?name=Win32%2fzotob. November 2005.

[biblio07_15] (Microsoft 2006) "Using the
Checkv4.exe Utility," http://msdn.microsoft.com/
library/en-us/winsock/winsock/
using_the_checkv4_exe_utility_2.asp. MSDN, January
2006.

[biblio07_16] (Microsoft 2005c) "Privileges,"
http://msdn.microsoft.com/library/en-us/secauthz/
security/privileges.asp. MSDN, December 2005.

[biblio07_17] (Rich 2005) Rich,Amy. "The Least
Privilege Model in the Solaris 10 OS,"
http://www.sun.com/bigadmin/features/articles/
least_privilege.html. February 2005.

[biblio07_18] (Solar and Mondi 2005) Solar, and
AdamMondi. "POSIX Capabilities,"
http://www.gentoo.org/proj/en/hardened/
capabilities.xml. January 2005.

[biblio07_19] (Microsoft 2002) "SiteLock
Template 1.04 for ActiveX Controls,"
http://msdn.microsoft.com/archive/en-us/samples/
internet/components/sitelock/default.asp. MSDN, May
2002.

240

http://www.microsoft.com/security/encyclopedia/details.aspx?name=Win32%2fzotob
http://www.microsoft.com/security/encyclopedia/details.aspx?name=Win32%2fzotob
http://www.sun.com/bigadmin/features/articles/least_privilege.html
http://www.sun.com/bigadmin/features/articles/least_privilege.html
http://www.gentoo.org/proj/en/hardened/capabilities.xml
http://www.gentoo.org/proj/en/hardened/capabilities.xml

Chapter 8. Stage 3: Product
Risk Assessment
In this chapter:

Security Risk Assessment

Privacy Impact Rating

Pulling It All Together

Before investing a great deal of time designing and
implementing software, you should understand the
costs of building secure applications, especially those
handling data with privacy considerations. Obviously,
you want to expend as much effort as needed to create
the appropriate level of protection, but not too much
more. Higher risk translates into higher development
and support costs. As discussed in Chapter 1, privacy
and security are intricately intertwined, and
understanding the impact of both on your software is
an important part of performing a risk assessment
required to build protections into the software.

The purpose of the product risk assessment stage is to
clarify the level of effort required to fulfill Security
Development Lifecycle (SDL) requirements. During
this phase, you should identify

241

▪ What portions of the project will require threat
models before release.

▪ What portions of the project will require security
design reviews.

▪ What portions of the project will require
penetration testing (possibly by a mutually
agreed-upon third party).

▪ The scope of fuzz testing requirements.

Note

The steps involved in this stage of the SDL are for
guidance purposes only—it is left to the
development team to estimate the actual amount
of effort required to build the application.
Obviously, security and privacy ramifications are
important considerations in software estimation,
but so are product size, product scope, level of
automation, maturity of the development team,
and so on. See Steve McConnell’s Software
Estimation: Demystifying the Black Art for more
on estimation (McConnell 2006).

Your risk assessment should include two distinct
deliverables: first, the Security Risk Assessment and,
second, the Privacy Impact Rating. Let’s look at each.

242

Security Risk Assessment
The Security Risk Assessment is used to determine the
system’s level of vulnerability to attack. When we first
started the security engineering effort at Microsoft,
one of our earliest requirements was for teams to fill
out a short questionnaire, which the security team used
to determine how deeply to probe various parts of the
software. This questionnaire was a little like the
health-related paperwork you fill out when you first
visit a medical practitioner; the paperwork helps the
physician know where to poke and probe to determine
what might ail you.

On the CD

The disc that accompanies this book includes a
version of the Security Risk Assessment
document.

Some of the questions in the risk assessment are listed
in the following sections.

Setup Questions

• On which operating systems is your software
installed?

243

• Does your setup program require an
Administrators password?

• Does your setup application configure access
control lists (ACLs)? If yes, why are you not using
the default operating system ACLs?

• Does your installer modify the Active Directory
directory service schema? If yes, what are the
changes?

244

Attack Surface Questions

• Is your feature installed by default? If yes, why?

• Does your feature run by default? If yes, why?

• Does your feature run with elevated privileges? If
yes, why?

• Does your feature listen on network sockets? If
yes, which port numbers does it use?

• Does your feature have any network connections
that are accessible on the Internet? If yes, why are
they not restricted to a smaller set of addresses?

• Does your feature set any firewall policy? If yes,
what is the policy?

• Does your feature have any unauthenticated
network connections? If yes, which are
unauthenticated and why?

245

Mobile-Code Questions

• Does your feature include ActiveX controls (does
it use IDispatch)? If yes, why?

• If you build one or more ActiveX controls, why
are you not using technologies with fine-grained
security permissions, such as .NET or Java?

• If you build one or more ActiveX controls, are
they marked as safe for scripting? If yes, why?

• Does your feature include any script code? If yes,
what does the code do, and what languages do you
use?

246

Security Feature–Related Questions

• Does the application implement any security
mechanisms such as authentication or
authorization?

• Does the application implement or use any
cryptographic mechanisms?

247

General Questions

• Is this a new product? If not, how big is the delta
from the prior version?

• Has this product had serious security bugs in the
past? If yes, what are the bug numbers?

• Has a penetration-testing engagement been
performed on a previous release of this project?

• Does your application parse files?

• Does your application parse network traffic?

• Does your application query a database?

• Does your application include an Internet Server
Application Programming Interface (ISAPI)
application or filter?

• Does your application include sample code?

• What extensibility mechanisms do you have (for
example, plug-in protocol handlers)?

• What components can download and execute code
(for example, an automatic-update feature)?

248

• Does your application have user-mode and
kernel-mode components?

• Do your application’s non-administrative users
interact with elevated processes such as services?

249

Analyzing the Questionnaire
Although there are no absolute right or wrong answers
in the risk assessment questionnaire, if you can answer
affirmatively to many of these questions, the security
team will need to analyze your application more
deeply to ensure that the development team does the
best it can to shore up the application’s defenses.

That being said, here are some general rules you can
apply:

▪ Every method and property on every ActiveX
control must be reviewed to determine safety.

▪ If this is a new product, it will require a thorough
security design review.

▪ If the application has a networking interface, it
must be threat modeled.

▪ If the application has kernel-mode and user-mode
interaction, it must be threat modeled.

▪ If non-administrators interact with
higher-privileged processes, the application must
be threat modeled.

▪ If the application is a security feature, it must be
threat modeled.

▪ Sample code must meet the same quality
standards as shipping code and must therefore
follow all SDL requirements.

250

▪ If an application parses files or network traffic,
the application is subject to the SDL fuzzing
requirements as defined in Chapter 12.

251

Privacy Impact Rating
The next part of product risk assessment is to assess
the Privacy Impact Rating of the project. This
assessment is much simpler than the security risk
analysis because it has only three policy values:
privacy ranking 1, privacy ranking 2, and privacy
ranking 3. Before we explain the three levels, take a
look at Table 8-1 for descriptions of some important
terminology used when describing the data associated
with the privacy levels.

Table 8-1. Important Privacy-Related Definitions

Data Type Description

Anonymous
data

Any user data that is not unique or tied to a
specific person and cannot be traced back to
the person. This data might include hair
color, system configuration, method by
which a product was purchased (retail,
online, and so on), or usage statistics
distilled from a large collection of users.

Note that if anonymous data is associated
with personally identifiable information
(PII), it must also be treated as PII.

Personally
identifiable
information
(PII)

Any user data that uniquely identifies a user
such as contact information (name, address,
phone number, e-mail address, and so on).

252

Data Type Description

–Or–

Data that is commingled or correlated with
the user’s PII, for example, demographics
stored with the user’s PII or with a unique
ID that can be linked to the user’s PII.

–Or–

Data that is sensitive PII.

Sensitive
PII

Any user data that identifies an individual
and could facilitate identity theft or fraud.
This data includes social security numbers,
tax IDs, credit card numbers, and bank
account numbers.

–Or–

Data that is commingled or correlated with
PII and used as an authorization key, such as
passwords and PINs (personal identification
numbers), biometric information (when used
to authenticate), mother’s maiden name, and
so on.

–Or–

Data that is commingled or correlated with
PII and could be used to discriminate, such
as sexual preference or sexual lifestyle,
political or religious beliefs, ethnicity or
race, or trade union membership.

–Or–

253

Data Type Description

Data that is commingled or correlated with
PII and contains medical history or health
records or financial information.

–Or–

Data that has breadth and contents that are
unknown at the time of collection and could
hold sensitive PII. An example of this kind
of data is a raw memory dump.

Now we’ll explain the three privacy rankings.
Components determined to be at the highest privacy
ranking must be subjected to thorough privacy
analysis, often involving privacy experts, to make sure
that the application does not leak private data or
violate any privacy laws or regulations.

Note

Privacy rankings do not indicate the software’s
correctness; rather, they indicate the level of
privacy thoroughness required, which translates
into necessary cost, time, and effort.

254

Privacy Ranking 1
If any of the following statements are true of your
application, it has the highest-possible privacy ranking
and therefore requires the highest privacy due
diligence:

▪ The application stores PII or transfers PII to the
software developer or a third party.

▪ The application is targeted at children or could be
deemed attractive to children, or the application
includes any user experiences in which you know
the user’s age. Knowing that the application
might be used by children is especially important
in online applications because such applications
must protect users under age 13 to abide by the
Children’s Online Privacy Protection Act
(COPPA 1998), which requires adult permission
to collect PII.

▪ The application continuously monitors the user of
your application.

▪ The application installs new software or changes
the user’s file-type associations (for example, it
changes the application that handles JPEG files),
home page, or search page.

Important

255

Before collecting and transferring PII, you must
have compelling business value and customer
value. Many customers are accustomed to making
deals, but when a deal does not benefit them, they
often feel cheated and might begin to distrust your
company. Collect personal data only if you can
clearly explain the benefit to users. If you are
hesitant to any degree to tell users what you plan
to do with their PII, do not collect their data.

256

Privacy Ranking 2
If your application transfers anonymous data to the
software developer or to a third party, the application
is rated at privacy ranking 2.

257

Privacy Ranking 3
If the application exhibits none of the behaviors in
privacy rankings 1 and 2, the application is rated at
privacy ranking 3.

258

Pulling It All Together
Once you have determined your application’s level of
security and privacy risk, you must allot time in the
schedule to make sure the appropriate level of
expertise and effort is applied to reduce the overall
risk to customers. For example, if your software
product has many security risks, you must evaluate
and analyze each risk to make sure the correct security
decisions have been made to protect customers.

Note

Sometimes an insecure design is necessary to
support legacy environments. In that case, you
should evaluate the tradeoff between risk and
compatibility.

If the application handles and transfers sensitive data,
identify the business and customer benefits for doing
this. If there is no customer and business benefit for
collecting such data, remove that feature from your
application.

259

Summary
The product risk assessment stage is critically
important because it helps you determine how best to
spend resources when developing the software. Before
you begin product development, your team should
complete a simple questionnaire to determine the
software’s highest-risk components. If the
questionnaire shows that you employ numerous
potentially risky technologies, or if you determine that
you risk privacy violations, the application must
undergo much greater security and privacy scrutiny. In
some cases, your potential security issues determine
the level of effort you must dedicate to other parts of
the SDL, such as fuzzing, security design review, and
threat modeling.

260

References

261

Bibliography
[biblio08_01] (McConnell 2006) McConnell,Steve.
Software Estimation: Demystifying the Black Art.
Redmond, WA: Microsoft Press, 2006.

[biblio08_02] (COPPA 1998) Federal Trade
Commission. Children’s Online Privacy Protection
Act of 1998, http://www.coppa.org/.

262

http://www.coppa.org/

Chapter 9. Stage 4: Risk
Analysis
In this chapter:

Threat-Modeling Artifacts

What to Model

Building the Threat Model

The Threat-Modeling Process

Using a Threat Model to Aid Code Review

Using a Threat Model to Aid Testing

Key Success Factors and Metrics

If we had our hands tied behind our backs (we don’t)
and could do only one thing to improve software
security—threat modeling, better security code
reviews, or better security testing—we would do threat
modeling every day of the week. The reason is simple:
when performed correctly, threat modeling occurs
early in the project lifecycle and can be used to find
security design issues before code is committed. This

263

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch09s07.html

can lead to significant cost savings because issues are
resolved early in the development lifecycle. Derived
from numerous studies and research sources,
Table 9-1—from Steve McConnell’s Code Complete
(McConnell 2004)—shows the relative cost of fixing
defects in code.

Table 9-1. Relative Cost of Removing Software
Defects

Defect
Introduction
Point

Defects
Found During
Requirements

Defects
Found
During
Architecture

Defects
Found
During
Construction

Defects
Found
During
Test

Defects
Found
After
Release

Requirements 1 3 5–10 10 10–100

Architecture None 1 10 15 25–100

Construction None None 1 10 10–25

The idea behind threat modeling is simply to
understand the potential security threats to the system,
determine risk, and establish appropriate mitigations.
Threat modeling also helps businesses manage
software risk, creates awareness of security
dependencies and assumptions, and provides the
ability to translate technical risk to business impact
(and vice versa). Over the last two years, Microsoft
has extensively researched how to improve threat
modeling and has garnered feedback from the

264

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch09.html#relative_cost_of_removing_software_defec

Microsoft Trustworthy Computing Academic
Advisory Board (TCAAB 2003), Microsoft
employees, and others in the software and security
industries and academia.

Note

The meaning of the word threat is much debated.
In this book, a threat is defined as an attacker’s
objective. To some, the threat is the attacker or
adversary; we refer to this entity as the threat
agent. These definitions are used in the Common
Criteria.

The threat-modeling processes documented in Writing
Secure Code, Second Edition (Howard and LeBlanc
2003) and then explained further in Threat Modeling
(Swiderski and Snyder 2004) have received some
valid criticism; most notably, they require too much
security expertise, and they’re subjective (Torr 2005).

The updated method described in this chapter
addresses both these issues by providing a more
streamlined and coherent process. Note that threat
modeling is not a static process. At Microsoft, we are
constantly learning how make the technique easier,
more approachable, and frankly, more beneficial.

265

The benefits of threat modeling are numerous.
Notably, threat modeling

▪ Contributes to the risk management process
because threats to software and infrastructure are
risks to the user and environment deploying the
software.

▪ Uncovers threats to the system before the system
is committed to code.

▪ Revalidates the architecture and design by having
the development team go over the design again.

▪ Forces development staff to look at the design
from a different viewpoint—that of security and
privacy. To understand the most at-risk
components, development staff focuses on
components with a high attack probability.

▪ Helps clarify the selection of appropriate
countermeasures for the application and
environment.

▪ Contributes to the Attack Surface Reduction
(ASR) process for the software. (See Chapter 7.)

▪ Helps guide the code review process.

▪ Guides the penetration testing process.

We’ll discuss all of these throughout the rest of this
chapter. But before we do, we want to explain
something very important about threat models. At
Microsoft, we have found that a good set of threat

266

models is a sign of a "security healthy" team. Good
threat models mean the team has thought through the
security and privacy issues in depth. Contrast this with
a group that has poor or incomplete threat models, and
this might indicate the team has not spent enough time
thinking through the threats to the system. It does not
mean the code is poor quality; it might very well be
rock-solid, but the team still might need help
understanding the threats.

Best Practices

A good set of threat models is a sign of a "security
healthy" team. It indicates that the team has
thought through security and privacy issues in
depth. A group that has poor or incomplete threat
models might not have spent enough time
thinking through the threats to the system.
Although the code they produced might be great,
team members might need help recognizing that
code threats continue to be a serious issue.

Threat-Modeling Artifacts
The main output of the threat-modeling process is a
document (or documents) that describes background
information about the application and defines the
high-level application model, often by using data flow

267

diagrams (DFDs); a list of assets that require
protection; threats to the system ranked by risk; and,
optionally, a list of mitigations. Relevant background
information includes the following:

▪ Use scenarios. Deployment configurations and
broad customer uses

▪ External dependencies. Products, components,
or services the application or system relies on

▪ Security assumptions. Assumptions you make
about the security services offered by other
components

▪ External security notes. Information useful to
your product’s end user or administrator to
operate the system securely

We’ll explain these subjects in further detail shortly.

Note

In the "classic" Microsoft threat-modeling
process, internal security information (also called
internal security notes) can also be tracked. Such
tracking is infrequently done, so in the interests of
brevity, we won’t discuss internal security notes
in this chapter.

268

Once the threat model is complete, the document
should be placed under normal document control
policy. At this point, the threat model is treated like
any other specification or design document, and it
should be revisited often and updated as needed.

Important

A threat model should be updated for evolving
threats perhaps every six months. A threat model
that is more than a year old is probably woefully
out of date because of ongoing security research.
For example, in mid-September 2005, researchers
at the University of California, Berkeley, found a
way to analyze keyboard clicks to determine in
real time what a user types (UC Berkeley 2005).
To some people, this is not a big deal, but to
others it might very well be a serious system
threat. Prior to September 2005, this potential
threat was unknown.

269

What to Model
Large software products are composed of smaller
modules, and modeling smaller modules is often more
efficient than modeling the entire product. However,
this approach leads threats to the system once the
system is fully composed. After all, a system can be
secure at a micro level, but the interaction between
two components can cause insecurity if your security
assumptions about other components in the system are
incorrect.

As a start, consider the trust boundaries of your
application, and model all the components inside that
trust boundary. Next, look outside the boundaries to
determine what is really part of your application. If the
answer is "nothing," you have successfully bounded
the scope of your DFD. We’ll discuss trust or privilege
boundaries shortly.

Note

This chapter uses the example of an e-commerce
application named Pet Shop 4.0. Vertigo Software
created Pet Shop 4.0 for Microsoft Corporation to
demonstrate Microsoft .NET development best
practices (Pet Shop 2006).

270

Building the Threat Model
A common question we hear is, "Who builds the threat
model?" The threat-modeling process is owned by a
person in the design group, for example, an architect,
program manager, or analyst. The person who has the
most security background is probably the most
appropriate choice for this role. Other engineering
disciplines such as software development, user
education, and testing are also involved to provide
important design information, but they do not drive the
process; that is left to designers. Threat modeling is
part of the design process, after all.

At a high level, the model-building process follows
these steps:

▪ Prepare. System designers take the lead in
preparing, with input from the development team,
to build the DFDs. The resulting artifact is sent to
other team members for review before the core
threat-modeling analysis process begins.

▪ Analyze. All threats are uncovered through the
analysis process and are added to the threat
model document. At this stage, you include more
people in the process. However, try to keep the
number of attendees manageable—if you include
more than ten people, you’ll probably model too
much. Also remember that at this stage you
should discuss only threats, not mitigations.

271

▪ Determine mitigations. More of the product
team is involved in identifying mitigations. This
step is performed once the threat model is
basically complete. The team considers the model
to determine the appropriate remedies to the
threats. No doubt there will be feedback from
people not involved in the earlier analysis stage;
this is to be expected.

The rest of this chapter describes the threat-modeling
process in detail. We’ll cover the following topics:

▪ The Threat-Modeling Process

▪ Mitigation techniques

▪ Using a Threat Model to Aid Code Review

▪ Using a Threat Model to Aid Testing

272

The Threat-Modeling Process
Although the high-level steps involved in creating a
threat model may seem numerous, many of the
elements require little security expertise and are
virtually rote. The steps are as follows:

1. Define use scenarios.

2. Gather a list of external dependencies.

3. Define security assumptions.

4. Create external security notes.

5. Create one or more DFDs of the application
being modeled.

6. Determine threat types.

7. Identify the threats to the system.

8. Determine risk.

9. Plan mitigations.

Define Use Scenarios
At this stage of the process, the team needs to
determine which key threat scenarios are within scope.
For example, if you create a mobile or small device,
you’ll probably want to cover the stolen-device
scenario. However, you may determine that the device
stores no sensitive data whatsoever, so the risk
associated with a stolen device is low. In this situation,

273

you should explicitly state the reasoning behind your
decision. If you don’t, someone years from now is
bound to ask why you did not cover the stolen-device
scenario! If you later decide to store sensitive data on
the device, you’ll need to revisit the model.

You should also consider the insider-threat
scenario—should your product protect against
attackers who work for your company? If so, the
threats you need to consider will be quite different
from those that you can expect from external threat
agents. Never lose track of who you are up against.

Also include other common, but not security-related,
scenarios such as the type of customer you expect to
use your software. An application designed solely for
administration purposes (for example, a disk analysis
tool) has a different threat profile than a product that is
primarily accessed by anonymous users (for example,
a Web or e-mail server).

Caution

Do not confuse use scenarios with UML Use
Cases; the terms sound similar, but they are not
the same.

274

Gather a List of External
Dependencies
Your application is not self-sufficient: it runs on
operating systems and might use a database, Web
server, or high-level application framework. It’s
important that you document all the other code your
application depends on. For example, the
Internet-based pet store application, Pet Shop 4.0,
might depend on the following:

▪ A Web-based client using Microsoft Internet
Explorer 6.0 or later and FireFox 1.5 or later.

▪ Microsoft Windows Server 2003 and Solaris 10
servers

▪ On the server only, Microsoft SQL Server 2005
(on Windows Server 2003) and Oracle 10g (on
Solaris 10)

▪ On the server only, Microsoft Message Queue 2.0

▪ Microsoft .NET Framework 2.0 and common
language runtime 2.0 (server only)

You should also consider the default system-hardening
configuration. For example, in the case of Windows
Server 2003, you might require only the default
hardened version of the operating system to run. Or
perhaps you might need to loosen some of the security
settings in the system. If you do this, you must inform
your users.

275

Define Security Assumptions
This is a critically important section because if you
make inaccurate security assumptions about the
environment in which the application resides, your
application might be rendered utterly insecure. For
example, if your application stores encryption keys, a
design requirement might be that you rely on the
underlying operating system to protect the keys, so the
assumption is that the operating system will protect
the keys correctly. Let’s analyze this assumption: in
the case of Microsoft Windows XP and later, this
might be true if you store the keys using the data
protection API (DPAPI). However, in the case of
Linux (as of the 2.6 kernel), there is no such service,
so the assumption is incorrect, and you shouldn’t store
encryption keys in plaintext unless you have other
viable defenses. For the record, most files holding
sensitive data are stored in Linux by using a
permission that allows access to only the most trusted
user, the root account. But this storage option might
not be enough; you might want to allow only a
specific user access to his or her sensitive data, not the
administrator and not the root account.

But trying to restrict access to only valid users and not
administrators is interesting; we have defined some
external security notes about the role of the root
account.

276

Create External Security Notes
Users and other application designers who interact
with your product can use external security notes to
understand your application’s security boundaries and
how they can maintain security when using your
application.

The prior section mentions that sensitive files in Linux
are often protected by a permission that allows only
root to access them. This means that root, like the
administrator and SYSTEM accounts in Windows, is
all-powerful and can usually read or manipulate any
file or setting in the operating system. Your users
should know this.

In some scenarios, this might not be the case if you are
using SELinux, which can enforce mandatory access
control or, in the case of tampering rather than
disclosure, Microsoft Windows Vista with its
mandatory integrity control might suffice. These are
both examples of security technologies and
dependencies that you assume behave as advertised.

As you can see, there is a tight relationship among
external security notes, security assumptions, and
dependencies. The following Pet Shop example shows
how external dependencies, security assumptions, and
external security information might relate.

277

Pet Shop 4.0 External Dependencies
We expect and rely on the following components
within the system. You should also outline specific
version numbers.

▪ Client

▪ Clients running Internet Explorer 6.0 or later
or FireFox 1.5 or later.

▪ Servers

▪ Windows Server 2003 SP1

▪ Microsoft Internet Information Services
(IIS) 6.0 (Web server computers)

▪ Microsoft ASP.NET 2.0 and .NET
Framework 2.0 (Web server computers)

▪ Microsoft SQL Server 2000, Microsoft SQL
Server 2005, or Oracle 10g (database server
computers)

▪ Windows Server 2003 Terminal Services
(all servers)

▪ Microsoft Message Queue 2.0 (Web server
computers)

▪ Microsoft Distributed Transaction
Coordinator (MSDTC) (all computers)

278

Pet Shop 4.0 Security Assumptions
Security assumptions are the guarantees you expect
from the external dependencies:

▪ No sensitive data is deliberately persisted on the
client, but sensitive data is sent over SSL/TLS
connections, and some browsers might locally
cache data sent over these connections.

▪ DPAPI is used on the server to protect sensitive
connection strings and encryption keys for
non-administrators.

▪ The database server holds authentication
information.

▪ The database server adequately protects
authentication data by using database server
authorization technology and, potentially,
encryption.

▪ IIS 6.0 and ASP.NET enforce authentication
correctly.

▪ Web service security configuration is held in
Web.config files and can be manipulated only by
valid administrators. This rule is enforced
through operating system access control lists
(ACLs).

▪ The server application setup program correctly
configures the ACL for the Web.config file.

279

▪ Only valid admins administer any server by using
Terminal Services or physically accessing the
server when needed.

▪ Only valid admins have physical access to the
Web and database servers.

▪ Browsing the Internet, reading e-mail messages,
and using peer-to-peer or instant messaging
applications on the servers is expressly
prohibited.

▪ Databases are configured to use their native
authentication protocols rather than operating
system authentication protocols. For example,
SQL Server uses Standard authentication and not
Windows authentication. This is done for two
main reasons. First, most users are Internet-based
users, not Windows users. The second reason is
performance—native authentication schemes are
faster.

▪ The connection information for each database is
stored in the application’s Web.config file and
protected by using the Protected Configuration
option, which uses DPAPI.

280

Pet Shop 4.0 External Security Information
The threat model must explain security-relevant
information that end users could employ to secure
their systems or, in some cases, understand the
security ramifications of enabling certain
functionality. Here’s the list of external security
information for our running example:

▪ Admins can change any setting in the system,
including the Web service.

▪ The only ports open are TCP/3389 (for
administration accessible only to other
administration computers), TCP/80 (for HTTP
traffic accessible from the Internet), TCP/443 (for
HTTPS traffic accessible from the Internet), TCP/
1433 and TCP/1521 (for database access that is
accessible only by the Web server and by
administration computers), and TCP/3372 (for
MSDTC, which is accessible by all computers
involved in order-processing transactions—these
are usually just the Web server computers and
database server computers).

The network diagram in Figure 9-1 shows the port
relationship among computers in the application.

281

Figure 9-1. Port usage in the Pet Shop 4.0 application.

282

What Is Modeled and What Do You Depend
On?
What follows is a best practice that can help uncover
the boundary between something you control and can
threat-model and something you can’t control but
depend on, which might have security assumptions.
This will probably be iterative because you need to
understand where to interface with components you
don’t control. Let’s say you’re building a Web
application that sits on top of some Web class helper
libraries you wrote, which in turn use a framework
library, which sits on top of a Web server, which sits
on top of a TCP/IP stack, which sits on top of a
network driver, which sits on top of a network card.
Figure 9-2 schematically represents this scenario.
When you put a line just below whatever you control,
everything above the line should be in your threat
model, and everything below it is something you
depend on.

283

Figure 9-2. Drawing the line between what you
threat-model and what you depend on.

284

Create One or More DFDs of the
Application Being Modeled
The next stage is creating DFDs for the application.
It’s critical that you get this right because if the DFD
is wrong, the rest of the threat-modeling process is
wrong. We won’t explain the DFD process in great
detail here because there is plenty of good literature
available on the subject (Kozar 1997, Sauter 2002,
Drewry 2005, Ambler 2006, DFD 2006, Yourdon
2006). However, we’ll cover enough to give you a
good overview of the process.

The highest-level DFD is the context diagram, which
shows the system under development at the center and
the external entities that interact with the system. The
context diagram helps you understand who interacts
with your code. Figure 9-3 shows a context diagram
for Pet Shop 4.0.

285

Figure 9-3. Context diagram for Pet Shop 4.0.

The shapes listed in Table 9-2 are used when building
DFDs.

Table 9-2. DFD Element Types

Shape DFD
Element
Type

Description

<double
circle>

Complex
process (also
called a
multiprocess)

A logical representation
of a process that performs
many distinct operations.
Examples include a
service or daemon, an
assembly, a Win32 .exe
file that hosts many
dynamic-link libraries
(DLLs).

286

Shape DFD
Element
Type

Description

<circle> Process A logical representation
of a process that performs
one discrete task. Some
DFD references use a
rounded rectangle to
represent a process.

<rectangle> External
entity (also
interactor)

Someone or something
that drives your
application but that your
application cannot
control. Examples include
system users,
asynchronous events, and
external processes.

<parallel
lines>

Data store Persistent data storage
such as files and
databases; could also
include cached
information. Some DFD
references use an
open-ended rectangle to
represent a data store.

<arrowed
line>

Data flow Means by which data
moves around the system.
Examples include
networking

287

Shape DFD
Element
Type

Description

communications, shared
memory, and function
calls.

<dotted
line>

Privilege
boundary
(also trust
boundary)

Specific to threat
modeling, privilege
boundaries delineate data
moving from low to high
trust and vice versa.
Examples are
machine-to-machine
boundaries, process
boundaries (where, for
example, a low-privilege
user communicates with a
high-privilege process),
and the line between
kernel-mode and
user-mode code.

As you can see in the context diagram in Figure 9-3,
one central complex process is the entire Pet Shop 4.0
application itself. The only external entry points are to
anonymous users, Pet Shop customers, and
administrators.

Value of Privilege or Trust Boundaries

288

Trust boundaries are demarcation points in the
application that show where data moves from
lower privilege to higher privilege. These
boundaries can help pinpoint areas in the
application where data must be analyzed for
correctness, but they can also be the site of
sensitive data leaks. For example, an anonymous
user creates a request that is sent to a
higher-privilege process for consumption. Because
the data moves from low privilege to a higher
privilege, the request must be vetted for
correctness. Any code on a boundary like this must
be human-reviewed for correctness. This is
especially true if the trust delta is large. For
example, an anonymous user interacting with code
running as admin, root, or system constitutes a
very large privilege delta, whereas an
administrator interacting with the same code
constitutes a substantially lower privilege delta.

But there is more to this. Because data moving
from high to low privilege must not leak sensitive,
private, or confidential data, you must analyze the
data traveling from the high-privilege process to
make sure error messages and the like do not leak
enough to aid an attacker.

Notice how all the components of the context diagram
in Figure 9-3 are numbered, and each data flow is
associated with a verb or verb/noun. Adding verbs and
possibly nouns to a data flow helps provide context for

289

the tasks you expect the user to perform. For some
data flows, you can use create, read, update, and delete
(CRUD) nomenclature. This nomenclature is fine for
most data flows, but it’s not very descriptive because
you often need to include a noun to describe what is
being manipulated.

The next step is to look at the context diagram, drill
down into the complex processes, and create the next
diagram, which is called the level-0 DFD. The context
diagram for Pet Shop 4.0 has only one complex
process: element 4.0. Figure 9-4 shows the level-0
DFD—the view of the application when you drill
inside the Pet Shop 4.0 complex process.

Figure 9-4. The level-0 DFD for Pet Shop 4.0.

As you can see, it’s a little more complex when you
drill down. You’ll also notice one more complex

290

process in the level-0 DFD: the order-processing
process (4.7). We need to drill down into that, too,
until there are no complex processes left. In the
interests of clarity, we reduce the number of data
flows from the administrator to the various data stores
she manages. Figure 9-5 shows the level-1 DFD for
order processing.

Figure 9-5. The level-1 DFD for order processing
within Pet Shop 4.0.

At this level, we can see that the Pet Shop 4.0
application handles both synchronous and
asynchronous requests. Asynchronous orders generally
allow for greater application throughput. In this
application, throughput increases by up to 30 percent.
In the Pet Shop 4.0 application, asynchronous orders
are not fulfilled immediately; rather, they are fulfilled
by an external application that is not covered by this
threat model.

291

Note that the numbering system for each of the DFD
elements is a hierarchical dotted notation. Element 4.0
in the original context diagram (Figure 9-3) contains
elements 4.1 through 4.9 in the level-0 DFD, and
element 4.7 contains elements 4.7.1 through 4.7.10.

Important

The original Pet Shop 4.0 application did not
include an audit-log facility; we added it (4.7.9
and 4.7.10) and made a design-change request to
the Pet Shop authors. Programs such as online
e-commerce applications need auditing facilities
beyond those offered by the Web server and the
database engines because many of the ordering
semantics are lost to the Web and database servers
that see only HTTP requests and database queries.

292

Determine Threat Types
Microsoft uses a threat taxonomy called STRIDE to
identify various threat types. STRIDE considers
threats from the attacker’s perspective. Another
common taxonomy is CIA, described below, which
defines desirable security properties. STRIDE is more
complete than CIA in that CIA does not address
common security issues today, such as authentication.
The properties of CIA are as follows:

▪ Confidentiality. Ensures that information is not
accessed by unauthorized users

▪ Integrity. Ensures that information is not altered
by unauthorized users in a way that is
undetectable by authorized users

▪ Availability. Ensures that principals (users or
computers) have appropriate access to resources

The following sections describe the components of
STRIDE.

Spoofing Identity
Spoofing threats allow an attacker to pose as
something or somebody else, such as another user
pretending to be Bill Gates, a server pretending to be
Microsoft.com, or even code posing as Ntdll.dll.

293

Tampering
Tampering threats involve malicious modification of
data or code. The data or code being manipulated
could be at rest or ephemeral "on-the-wire" data.

294

Repudiation
An attacker makes a repudiation threat by denying to
have performed an action that other parties can neither
confirm nor contradict. For example, a user makes a
repudiation threat when he performs an illegal
operation in a system that can’t trace the prohibited
operation.

Non-repudiation is a system’s ability to counter
repudiation threats. For example, in a commercial
system, if a user signs for a purchased item upon
receipt, the vendor can later use the signed receipt as
evidence that the user received the item. As you can
imagine, non-repudiation is important for e-commerce
applications.

An important caveat you should understand about
repudiation is that only humans repudiate (Ellison
2000). However, computers and software can gather
evidence that can be used to counter the claims of the
repudiating party.

295

Information Disclosure
Information disclosure threats involve the exposure of
information to individuals who are not supposed to
have access to it. Examples of this type of threat
include a user’s ability to read a file that she was not
granted access to and an intruder’s ability to read data
in transit between computers.

Caution

Information disclosure threats, if left unmitigated,
can become privacy violations if the disclosed
data is confidential or personally identifiable
information (PII).

296

Denial of Service
Denial-of-service (DoS) attacks deny or degrade
service to valid users—for example, by making a Web
server temporarily unavailable or unusable. You must
protect against certain types of DoS threats simply to
improve system availability and reliability.

297

Elevation of Privilege
Elevation-of-privilege (EoP) threats often occur when
a user gains increased capability, often as an
anonymous user who takes advantage of a coding bug
to gain admin or root capability. One of the many
examples of this threat is a series of defects in the
open-source version-control software—Concurrent
Versions System, or CVS—on Linux (CERT 2003),
which led to a compromise of the kernel source code
(Silicon 2003).

EoP is more subtle than as previously described
because it does not apply only to anonymous or
low-trust users. For example, the ability to go from an
anonymous to a valid user is an EoP, as is moving
from user to admin.

EoP threats also exist in code; for example, if a flaw in
the Java or .NET runtime grants a unit of code more
permission than normal, that too is an EoP threat. Java
Web Start Untrusted Application Privilege Escalation
(CVE-2005-1974) is an example of this threat.
Likewise, running mobile code in a Web browser with
more capability than the code should have is an EoP.
Firefox/Mozilla Chrome UI DOM Property Override
Privilege Escalation (CVE-2005-1160) is an example
of this kind of EoP, as is the URL Decoding Zone
Spoofing Vulnerability in Internet Explorer
(CVE-2005-0054).

298

Identify Threats to the System
Once the DFD is done, you need to list all the DFD
elements (also often referred to as assets) because you
need to protect these elements from attack. Table 9-3
lists all the elements in the preceding DFD diagrams.
Note that you don’t include complex processes; rather,
you include the processes, data stores, and data flows
inside the complex process. However, you do model
data flows in and out of a complex process.

Table 9-3. DFD Elements Within the Pet Shop 4.0
Application

DFD Element
Type

DFD Item Numbers

External Entities Pet Shop customer (1.0)

Anonymous user (2.0)

Administrator (3.0)

Processes Web application (4.2)

User profile (4.5)

Membership (4.6)

Order processor (4.7.1)

Synchronous order processor (4.7.2)

Asynchronous order processor (4.7.3)

299

DFD Element
Type

DFD Item Numbers

Data access component (4.7.4)

Queuing component (4.7.5)

Auditing engine (4.7.9)

Data Stores Web application configuration data
(4.1)

Web pages (4.3)

User profile data (4.8)

Membership data (4.9)

Orders data (4.7.6)

Inventory data (4.7.7)

Asynch orders data (4.7.8)

Audit-log data (4.7.10)

Data Flows
(partial list for
brevity)

Anonymous user request (2.0→4.2)

Anonymous user response (4.2→2.0)

Pet Shop customer request (1.0→4.2)

Pet Shop customer response (4.2→1.0)

Web application reading configuration
data (4.1→4.2)

Web pages read by Web application
(4.3→4.2)

300

DFD Element
Type

DFD Item Numbers

Admin creating or updating Web
application configuration data
(3.0→4.1)

Admin reading Web application
configuration data (4.1→3.0)

Admin creating, updating, or deleting
Web pages (3.0→4.3)

Admin reading Web pages (4.3→3.0)

Web application creating or updating
an order (4.2→4.7.1)

Web application reading an order
(4.7.1→4.2)

Now we have a list of all the DFD elements or assets
within the application. Note that nearly all of the data
flows are bidirectional. You should think of them as
being separate for the time being.

You can apply a process called reduction to reduce the
number of entities you will analyze. In short, if you
have two or more DFD elements of the same type (for
example, two or more processes) behind the same trust
boundary, you can model the elements as one entity,
as long as the elements were written in or are using the
same technology and are handling similar data. In
other words, when you analyze the threats to one of
the elements, that same analysis applies to the other

301

element also. You can see the biggest benefit of this
process when you reduce data flows, which tend to be
numerous. The first consideration is whether to reduce
the bidirectional flows. For example, the anonymous
user request and response (2.0→4.2 and 4.2→2.0) can
be collapsed because:

▪ The data flows use the same technology (HTTP
over TCP).

▪ They share the same process and external entity
(2.0 and 4.2).

▪ The data content in either direction is public and
anonymous.

The same reduction process applies to a Pet Shop
customer request and response (1.0→4.2 and
4.2→1.0). The only difference is that the data flows
carry authentication information, too, and the user can
place orders and look up order information. You can
also reduce the Web pages used for configuration
(4.3→3.0 and 3.0→4.3), Web application
configuration data (4.1→3.0 and 3.0→4.1), and Web
application reading or manipulating order information
(4.2→4.7.1 and 4.7.1→4.2).

The synchronous and asynchronous order-processing
processes, 4.7.2 and 4.7.3, can also be reduced
because they handle exactly the same data types, are
within the same trust boundary, and are written in the
same language (C#). The same applies to the
data-access (4.7.4) and queuing (4.7.5) components

302

and the orders (4.7.6) and asynchronous orders (4.7.8)
data stores.

So now, after reduction, the abbreviated list of DFD
elements looks like that in Table 9-4.

Table 9-4. Reduced DFD Elements Within Pet Shop
4.0

DFD
Element
Type

DFD Item Number

External
Entities

Pet Shop customer (1.0)

Anonymous user (2.0)

Administrator (3.0)

Processes Web application (4.2)

User profile (4.5)

Membership (4.6)

Order processor (4.7.1)

Sync/Async order processors (4.7.2 and 4.7.3)

Data-access or queuing components (4.7.4
and 4.7.5)

Auditing engine (4.7.9)

Data
Stores

Web application configuration data (4.1)

Web pages (4.3)

303

DFD
Element
Type

DFD Item Number

Use profile data (4.8)

Membership data (4.9)

Order and async orders data (4.7.6 and 4.7.8)

Inventory data (4.7.7)

Audit-log data (4.7.10)

Data
Flows
(partial
list)

Web application reading configuration data
(4.1→4.2)

Web pages read by Web application
(4.3→4.2)

Anonymous user request/response
(2.0→4.2→2.0)

Pet Shop customer request/response
(1.0→4.2→1.0)

Admin reading, creating, updating Web
application configuration data
(3.0→4.1→3.0)

Admin reading, creating, updating, deleting
Web pages (3.0→4.3→3.0)

Web application reading, creating, updating
an order (4.2→4.7.1→4.2)

304

Note

We have already defined STRIDE, but to save
you time, here’s what the acronym means:
spoofing, tampering, repudiation, information
disclosure, DoS, and EoP. Remember, STRIDE
looks at threats from an attacker’s perspective.

Once the list of DFD elements is complete, you can
apply STRIDE to each of the elements in the list by
following the mapping of STRIDE categories to DFD
element types in Table 9-5.

Table 9-5. Mapping STRIDE to DFD Element Types

DFD Element
Type

S T R I D E

External Entity X X

Data Flow X X X

Data Store X † X X

Process X X X X X X

305

In essence, everything in the DFD is subject to attack,
and the nature of the potential attack is determined by
the DFD element type. For example, a data flow is
subject to tampering, information disclosure, and DoS
attacks.

Note

Most, but not all, DoS attacks against data stores
and data flows are against a process at one end of
the data flow or the process serving the data store.

Note the dagger mark (†) at the intersection of the data
store row and the repudiation column. If the data store
contains logging or audit data, repudiation is a
potential threat because if the data is maliciously
manipulated in any way, an attacker could cover his or
her tracks, or a criminal could renege on a transaction.
Of all the data stores in the DFDs, only one, the audit
data store (4.7.10), is of concern from a repudiation
perspective. The audit data store is important because
it holds process-ordering audit information such as the
following:

▪ Transaction date and time

▪ Pet Shop customer ID

▪ Pet Shop customer IP address

306

▪ Order transaction ID

The order transaction ID can then be used to
cross-reference with the actual order in the ordering
system.

The term spoofing is often misused in the context of
security; many spoofing threats are in fact tampering
threats. Replacing a file with a bogus file or changing
bytes in a file is tampering. A real example of process
spoofing would be spoofing a Web server. Ordinarily,
the attacker does not have direct access to the Web
server software serving Web pages for say,
Microsoft.com, but the attacker might be able to spoof
the site, perhaps using cache or Domain Name System
(DNS) poisoning. However, one could argue that these
attacks are really tampering threats against a data store
(the user’s cache, a proxy’s cache, or the DNS server
records.) The security of the appropriate caches and
servers could be treated as a security assumption—you
are assuming that all the appropriate caches and
infrastructure servers (DNS, DHCP, and so on) are
performing correctly.

A variant of spoofing is typosquatting, in which an
attacker creates a valid domain name, such as
Micros0ft.com (note the zero instead of the letter o)
and then builds a Web page that looks like valid
Microsoft content. This is a very low-tech attack.

307

Important

Sometimes a perceived threat might in fact be a
security assumption violation. For example, a
spoofed Web site could manifest itself as a
corrupted or tampered-with hosts file on a user’s
computer.

In Table 9-6, we combine the list of DFD elements
with the STRIDE mappings to arrive at a list of threats
to the system being modeled. To do this, we gather the
elements from Table 9-4 and then determine the
threats to which each is susceptible by using
Table 9-5.

Table 9-6. Determining Threats for DFD Elements
Within Pet Shop 4.0

DFD
Element
Type

Threat
Types
(STRIDE)

DFD Item Numbers

External
entities

SR (1.0), (2.0), (3.0)

Processes STRIDE (4.2), (4.5), (4.6), (4.7.1),
(4.7.2 and 4.7.3), (4.7.4 and
4.7.5), (4.7.9)

308

DFD
Element
Type

Threat
Types
(STRIDE)

DFD Item Numbers

Data
stores

T(R)ID (4.1), (4.3), (4.8), (4.9), (4.7.6
and 4.7.8), (4.7.7), (4.7.10
repudiation)

Data
flows
(partial
list for
brevity)

TID (4.1→4.2), (4.3→4.2),
(2.0→4.2→2.0),
(1.0→4.2→1.0),
(3.0→4.1→3.0),
(3.0→4.3→3.0),
(4.2→4.7.1→4.2)

Notice the parentheses around the letter R in the data
stores row; a data store might be subject to repudiation
threats if the data held in the store is logging or
auditing data. In our Pet Shop example, data store
4.7.10 is subject to repudiation threats because it
stores auditing data.

Table 9-7 gives us a complete list of potential threats
to the system by showing the information from
Table 9-6 a different way.

Table 9-7. Threats to the System

309

Threat
Type
(STRIDE)

DFD Item Numbers

Spoofing External entities: (1.0), (2.0), (3.0)

Processes: (4.2), (4.5), (4.6), (4.7.1), (4.7.2
and 4.7.3), (4.7.4 and 4.7.5), (4.7.9)

Tampering Processes: (4.2), (4.5), (4.6), (4.7.1), (4.7.2
and 4.7.3), (4.7.4 and 4.7.5), (4.7.9)

Data stores: (4.1), (4.3), (4.8), (4.9), (4.7.6
and 4.7.8), (4.7.7), (4.7.10)

Data flows: (4.1→4.2), (4.3→4.2),
(2.0→4.2→2.0), (1.0→4.2→1.0),
(3.0→4.1→3.0), (3.0→4.3→3.0),
(4.2→4.7.1→4.2)

Repudiation External entities: (1.0), (2.0), (3.0)

Data flow: (4.7.10)

Information
disclosure

Processes: (4.2), (4.5), (4.6), (4.7.1), (4.7.2
and 4.7.3), (4.7.4 and 4.7.5), (4.7.9)

Data stores: (4.1), (4.3), (4.8), (4.9), (4.7.6
and 4.7.8), (4.7.7), (4.7.10)

Data flows: (4.1→4.2), (4.3→4.2),
(2.0→4.2→2.0), (1.0→4.2→1.0),
(3.0→4.1→3.0), (3.0→4.3→3.0),
(4.2→4.7.1→4.2)

310

Threat
Type
(STRIDE)

DFD Item Numbers

DoS Processes: (4.2), (4.5), (4.6), (4.7.1), (4.7.2
and 4.7.3), (4.7.4 and 4.7.5), (4.7.9)

Data stores: (4.1), (4.3), (4.8), (4.9), (4.7.6
and 4.7.8), (4.7.7), (4.7.10)

Data flows: (4.1→4.2), (4.3→4.2),
(2.0→4.2→2.0), (1.0→4.2→1.0),
(3.0→4.1→3.0), (3.0→4.3→3.0),
(4.2→4.7.1→4.2)

EoP Processes: (4.2), (4.5), (4.6), (4.7.1), (4.7.2
and 4.7.3), (4.7.4 and 4.7.5), (4.7.9)

Now that we have this list, it’s time to look at the
potential risk of each threat.

311

Determine Risk
Historically, security specialists have used numeric
calculations to determine risk. The problem with using
numbers is they can be very subjective. For example,
Microsoft often used DREAD ratings (Damage
potential, Reproducibility, Exploitability, Affected
users, Discoverability) to calculate risk, and
sometimes people used a calculation like this one:

Risk = Chance of Attack × Damage Potential

Simply put, the problem is determining the chance of
attack. You can’t predict the future, so you have no
idea, other than a guess, what the chance of attack
really is. We’re not saying security risk calculation
using numbers is useless—it’s not—but it’s very hard
to be consistent and accurate (especially as team
members move around), so use numeric calculations
with caution.

Microsoft has created a bug bar that defines the
characteristics of a threat and, thereby, the level of
risk. Rather than use numbers, the risk rankings are
derived in part from the Microsoft Security Response
Center (MSRC) security bulletin rankings. We will
use the term "risk level" to indicate overall risk; risk
level 1 is highest and risk level 4 is the lowest. The
characteristics of a threat include:

312

▪ Server application (for example, an e-mail server)
versus client application (for example, a word
processor).

▪ Local versus remote accessibility.

▪ Accessibility to anonymous versus authenticated
users.

▪ Accessibility to authenticated users versus
administrators.

▪ On by default versus off by default.

▪ The degree of user interaction required.

▪ In the case of an information disclosure threat,
whether the data is personally identifiable
information (PII) or is sensitive data.

▪ In the case of a DoS attack, whether the
application continues service or is nonfunctional
once an attack stops.

Figure 9-6 through Figure 9-10 illustrate an
abbreviated set of trees outlining the core elements of
the Security Development Lifecycle (SDL) bug bar
document.

313

Figure 9-6. Spoofing threats risk ranking.

Figure 9-7. Tampering threats risk ranking.

In Figure 9-8, target means the ability to disclose
selected data. An example of an untargeted attack is
one that perhaps yields random heap data.

314

Figure 9-8. Information disclosure threats risk ranking.

In Figure 9-9, with amplification means the attack
leads to an increase in denied service. For example, an
attacked computer begins to attack all computers on
the subnet, as in the TCP/IP smurf attack.

315

Figure 9-9. DoS threats risk ranking.

Figure 9-10. EoP threats risk ranking.

Note that there are no risk rankings for repudiation
threats. The threats remain unranked for various
reasons—most notably because Microsoft has issued

316

no security bulletins relating to repudiation. In general,
the feeling is that any such errors follow the tampering
risk rankings.

By the end of the risk-identification stage, you should
have ranked your threats by risk, from high to low.
Obviously, you should address the highest-risk items
first. Risk level 1 or 2 threats must always be remedied
during the development phase. Risk level 3 threats
should be fixed before the product becomes a release
candidate, and risk level 4 threats should be fixed if
time permits.

317

Plan Mitigations
Often referred to as countermeasures or defenses,
mitigations reduce or eliminate the risk of a threat.
You have only a small set of mitigation strategies
available to you:

▪ Do Nothing.

▪ Remove the Feature.

▪ Turn Off the Feature.

▪ Warn the User.

▪ Counter the Threat with Technology.

Let’s look at each option in detail.

Do Nothing
For low-risk threats, doing nothing could be a valid
strategy. However, you might find it worthwhile to
update your external-security notes to reflect such
threats.

318

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch09s04.html#remove_the_feature
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch09s04.html#turn_off_the_feature
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch09s04.html#warn_the_user

Remove the Feature
Removing a feature is the only way to reduce the risk
to zero. We have done this numerous times at
Microsoft when threat models indicate that the risk is
too great or the mitigations are untenable. In those
cases, the best course of action is to not build the
feature in the first place. Obviously, this is a balancing
act between user features and potential security risks.

319

Turn Off the Feature
Turning off a feature is less drastic than removing a
feature and should be used only to reduce risk further.
Building a threat-ridden feature and then simply
turning it off by default is unacceptable. Consider this
only as a defense-in-depth strategy.

320

Warn the User
For some threats, you should warn the user. However,
be aware that most users, especially non-technical
users, make poor trust decisions. Beware of threat
models that are rife with user-warning mitigations.

321

Counter the Threat with Technology
Countering threats with technology is the most
common mitigation strategy. Use a technology such as
authentication or encryption to solve specific issues.
To determine what mitigations to use, consider threat
types. Table 9-8 outlines high-level mitigation
strategies by threat type.

Table 9-8. Mitigation Techniques Based on STRIDE
Threat Type

Threat Type Mitigation Technique

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation services

Information disclosure Confidentiality

DoS Availability

EoP Authorization

For each of the mitigation techniques, you can use one
or more technologies. Table 9-9 gives some examples.

Table 9-9. Mitigation Technologies

322

Mitigation
Technique

Mitigation Technology

Authentication Authenticate principals:

▪ Basic authentication

▪ Digest authentication

▪ Cookie authentication

▪ Windows authentication (NTLM)

▪ Kerberos authentication

▪ PKI systems such as SSL/TLS
and certificates

▪ IPSec

▪ Digitally signed packets

Authenticate code or data:

▪ Digital signatures

▪ Message authentication codes

▪ Hashes

Integrity ▪ Windows Vista Mandatory
Integrity Controls

▪ ACLs

▪ Digital signatures

▪ Message authentication codes

323

Mitigation
Technique

Mitigation Technology

Non-repudiation
services

▪ Strong authentication

▪ Secure auditing and logging

▪ Digital signatures

▪ Secure time-stamps

▪ Trusted third parties

Confidentiality ▪ ACLs

▪ Encryption

Availability ▪ ACLs

▪ Filtering

▪ Quota

▪ Authorization

Authorization ▪ ACLs

▪ Group or role membership

▪ Privilege ownership

▪ Permissions

A complete list of mitigation mechanisms and best
practices for choosing the appropriate mitigation is
beyond the scope of this book, but much literature on

324

the topic exists (Viega and McGraw 2001, Ferguson
and Schneier 2003, Howard and LeBlanc 2003).

The next step in countering threats is to take all the
threats from the threat model, look up the mitigation
techniques, and then determine an appropriate
mitigation technology.

Table 9-10 provides a list of some "interesting" assets
from the Pet Shop 4.0 example. The list is highly
abbreviated and is intended only to give an example of
the final stages of the threat-modeling process.

Table 9-10. Abbreviated List of Interesting Threats to
Pet Shop 4.0

Example
Asset

Asset
Type

Threat Type
Susceptibility

Example
Threat

(1.0→4.2→1.0) Data flow
from Pet
Shop user
to Web
application
and back

TID I

4.7.10 Audit log
data store

T(R)ID T

4.7.1 Order
processor
process

TRIDE STRIDE

325

Now let’s look at the potential mitigations.

326

(1.0→4.2→1.0) Data Flow from Pet Shop
User to Web Application and Back
Data flows are subject to tampering, information
disclosure, and DoS attacks. We’ll focus on the
information disclosure threat because the data flow
from the Pet Shop user to the Web application and
back could contain potentially sensitive data such as
the user name and password and credit card
information. The mitigation technique for such threats
is confidentiality, and in this case, we can use SSL/
TLS because

▪ High-level protocols are always a preferred way
to mitigate threats because they are well proven
and easy to implement.

▪ SSL/TLS solves the confidentiality problem
through encryption.

▪ SSL/TLS solves the tampering threat by using
Message Authentication Codes (MACs).

▪ SSL/TLS solves the spoofing threat to the Web
application (4.2) by providing authentication
services.

327

(4.7.10) Audit Log Data Store
Data stores are subject to tampering, information
disclosure, DoS, and, potentially, repudiation attacks.
In this audit log example, we’re going to look at the
tampering threat because this could lead to repudiation
issues. If an attacker can tamper with the data log
store, he can cover his tracks or repudiate his
transactions.

Tampering threats are mitigated with integrity
technologies such as ACLs, hashes, digital signatures,
or MACs. You should use a good ACL on the log file
that allows only the logging process and trusted users
to manipulate the file. Then you should use a signature
or message authentication code on the file as well,
depending on your business requirements.

328

(4.7.1) Order Processor Process
Finally, processes are susceptible to spoofing,
tampering, information disclosure, DoS, and EoP
attacks. The tampering threat for the processor process
can be mitigated in the same way the tampering threat
is mitigated for the audit log file: use an ACL and a
MAC or digital signature. In the case of a process,
you’ll probably use a signature; these are commonly
used to protect code. The two mitigations for the EoP
threat are first to authorize only valid users to access
the code, and second to always run the code by using
the lowest-possible privilege.

We finally have a list of mitigations we can build into
the design of the Pet Shop 4.0 application. Table 9-11
summarizes our defenses.

Table 9-11. Defenses Used in Portions of Pet Shop 4.0

Asset Asset
Type

Example
Threat

Example
Mitigation

(1.0→4.2→1.0) Data flow
from Pet
Shop user
to Web
application
and back

I SSL/TLS
(also
mitigates
the
tampering
threat)

4.7.10 Audit log
data store

T ACL and
MAC

329

Asset Asset
Type

Example
Threat

Example
Mitigation

4.7.1 Order
processor
process

T and E ACL,
MAC, and
reduced
process
privilege

Role of Threat Trees

If you are familiar with other texts that cover threat
modeling, you may notice that threat trees are not
covered in this chapter. This is by design. Threat
trees, although very useful, require a lot of security
expertise to build and use correctly. One of the
most frequent criticisms we face about the earlier
threat-modeling process is the level of security
expertise required to build a good threat model.
Analysis revealed that the key weakness was
building the threat trees. So rather than expecting
non–security experts to build accurate and
consistent trees, we have removed them and
replaced them with threat tree patterns. These trees
illustrate common attack patterns and allow the
application designers to think about other
conditions in the system. You’ll find a complete
list of threat trees in Chapter 22.

330

After you build your threat model, you can consult
the trees to determine other conditions to consider.
For example, if you have a spoofing threat against
a user, you can consult the "Spoofing Threats
Against External Entities and Processes" tree and
look at the leaf nodes. These will prompt you to
ask other relevant questions about the design of the
system.

331

Using a Threat Model to Aid
Code Review
One of the deliverables from the threat-modeling
process is a list of entry points to the system. This is
really what the context diagram shows. If you look at
the context diagram for Pet Shop 4.0, shown earlier in
Figure 9-3, you see three main entry points to the
system: points accessible to anonymous users, points
accessible to Pet Shop customers, and points
accessible to administrators. When it comes to
reviewing the Pet Shop code for security bugs, it’s
imperative that you review all code that is remotely
and anonymously accessible before reviewing other
code. Simply look at the data flow diagram to
determine which elements are accessible in this
manner.

332

Using a Threat Model to Aid
Testing
As we have mentioned, specific threat types (spoofing
and tampering, for example) have specific mitigation
techniques. These techniques can also be attacked.
Determine how best to build attacks or perform
penetration testing by looking at the relevant threats’
tree patterns, defined in Chapter 22, and considering
the leaf nodes of each tree. These leaf nodes can give
you not only design insight but also attack insight.
Refer to Chapter 22 for more information.

333

Key Success Factors and
Metrics
What makes a good threat model? For quite some time
at Microsoft, we struggled with this question because
determining a good threat model is rather subjective.
The conundrum was a little like judge Potter Stewart’s
famous comment about the definition of pornography
(Stewart 1964): "But I know it when I see it."
Eventually, during the development of Windows
Vista, we had so many threat models to evaluate that
we started to use metrics to separate the good from the
not-so-good threat models. We eventually adopted the
version of the metrics shown in Table 9-12.

Table 9-12. Threat-Model Quality Guidelines

Rating Comments

No threat
model (0)

▪ No threat model is in place—this is
simply not acceptable because it indicates
that no threats are being considered.

Not
acceptable
(1)

▪ Threat model is clearly out of date if:

▪ Current design is significantly
different from that defined in the
threat model.

▪ –Or–

334

Rating Comments

▪ Date in document shows that it is
older than 12 months.

OK (2) ▪ A data flow diagram or a list of the
following exists:

▪ Assets (processes, data stores, data
flows, external entities)

▪ Users

▪ Trust boundaries (machine to
machine, user to kernel and vice
versa, high privilege to low
privilege and vice versa)

▪ At least one threat is detailed for each
software asset.

▪ Mitigations are provided for all risk level
1, 2, and 3 threats.

▪ Model is current.

Good (3) ▪ Threat model meets all definitions of
"OK" threat models.

▪ Anonymous, authenticated, local, and
remote users are all shown on the DFD.

▪ All S, T, I, and E threats have been
identified and classified as either
mitigated or accepted.

335

Rating Comments

Excellent
(4)

▪ Threat model meets all definitions of
"Good" threat models.

▪ All STRIDE threats have been identified
and have mitigations, external security
notes, or dependencies acknowledged.

▪ Mitigations have been identified for each
threat.

▪ External security notes include a plan to
create customer-facing documents (from
the external security notes) that explain
how to use the technology safely and
what the tradeoffs are.

At a minimum, threat models should be rated "OK"
and components that are to be penetration tested
should be "Good" or better.

336

Summary
Threat modeling is critically important to helping
build secure software because it is the cornerstone to
understanding how your product could be attacked and
how to defend it. The process is also a great way to
determine the overall security health of a software
development team because security-savvy teams are
more in tune with the threats to their code and,
therefore, tend to build better threat models.

By following the updated threat-modeling process,
you can systematically uncover threats to the
application, rank the risk of each threat, and determine
appropriate mitigations. Threat modeling can also help
you perform code reviews and build penetration tests.

337

References

338

Bibliography
[biblio09_01] (McConnell 2004) McConnell,Steve.
Code Complete, 2d ed. Redmond, WA: Microsoft
Press, 2004.

[biblio09_02] (TCAAB 2003) Microsoft Corporation.
"Microsoft Convenes Trustworthy Computing
Academic Advisory Board,"
http://www.microsoft.com/presspass/press/2003/
Feb03/02-20TWCAABPR.mspx. February 2003.

[biblio09_03] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, 2nd ed. Redmond, WA: Microsoft Press, 2003.

[biblio09_04] (Swiderski and Snyder 2004)
Swiderski,Frank, and WindowSnyder. Threat
Modeling. Redmond, WA: Microsoft Press, 2004.

[biblio09_05] (Torr 2005) Torr,Peter. "Guerrilla
Threat Modelling (or ‘Threat Modeling’ if
you’re American)," http://blogs.msdn.com/ptorr/
archive/2005/02/22/GuerillaThreatModelling.aspx.
February 2005.

[biblio09_06] (UC Berkeley 2005) Yang,Sarah,
University of California, Berkeley. "Researchers
recover typed text using audio recording of
keystrokes," http://www.berkeley.edu/news/media/
releases/2005/09/14_key.shtml. September 2005.

339

http://www.microsoft.com/presspass/press/2003/Feb03/02-20TWCAABPR.mspx
http://www.microsoft.com/presspass/press/2003/Feb03/02-20TWCAABPR.mspx
http://www.berkeley.edu/news/media/releases/2005/09/14_key.shtml
http://www.berkeley.edu/news/media/releases/2005/09/14_key.shtml

[biblio09_07] (Pet Shop 2006) Leake, Gregory,
Microsoft Corporation. "Microsoft .NET Pet Shop
4: Migrating an ASP.NET 1.1 Application to
2.0," http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnbda/html/
bdasamppet4.asp. MSDN, February 2006.

[biblio09_08] (Kozar 1997) Kozar,KennethA. "The
Technique of Data Flow Diagramming,"
http://spot.colorado.edu/~kozar/DFDtechnique.html.
1997.

[biblio09_09] (Sauter 2002) Sauter,Vicki, University
of Missouri, St. Louis. "Data Flow Diagrams,"
http://www.umsl.edu/~sauter/analysis/dfd/
dfd_intro.html. September 2002.

[biblio09_10] (Drewry 2005) Drewry,Tony. "Data
Flow Diagrams," http://www.cems.uwe.ac.uk/
~tdrewry/dfds.htm. October 2005.

[biblio09_11] (Ambler 2006) Ambler,ScottW. "Data
Flow Diagrams (DFDs),"
http://www.agilemodeling.com/artifacts/
dataFlowDiagram.htm. April 2006.

[biblio09_12] (DFD 2006) "Data Flow Diagrams -
Free Online Tutorial & Download,"
http://www.data-flow-diagrams.com/.

[biblio09_13] (Yourdon 2006) Yourdon, Ed. Just
Enough Structured Analysis project. Chapter 9, "Data
Flow Diagrams," http://www.yourdon.com/
strucanalysis/chapters/ch9.html.

340

http://www.umsl.edu/~sauter/analysis/dfd/dfd_intro.html
http://www.umsl.edu/~sauter/analysis/dfd/dfd_intro.html
http://www.cems.uwe.ac.uk/~tdrewry/dfds.htm
http://www.cems.uwe.ac.uk/~tdrewry/dfds.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.data-flow-diagrams.com/
http://www.yourdon.com/strucanalysis/chapters/ch9.html
http://www.yourdon.com/strucanalysis/chapters/ch9.html

[biblio09_14] (Ellison 2000) Ellison,Carl.
"Non-repudiation," http://world.std.com/~cme/
non-repudiation.htm.

[biblio09_15] (CERT 2003) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2003-02
Double-Free Bug in CVS Server,"
http://www.cert.org/advisories/CA-2003-02.html.
January 2003.

[biblio09_16] (Silicon 2003) Lemos,Robert. "Linux
kernel suffers Trojan horse hack,"
http://software.silicon.com/os/
0,39024651,39116796,00.htm. November 2003.

[biblio09_17] (CVE-2005-1974) Common
Vulnerabilities and Exposures. Java Web Start
Untrusted Application Privilege Escalation,
http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2005-1974.

[biblio09_18] (CVE-2005-1160) Common
Vulnerabilities and Exposures. Firefox/Mozilla
Chrome UI DOM Property Override Privilege
Escalation, http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2005-1160.

[biblio09_19] (CVE-2005-0054) Common
Vulnerabilities and Exposures. URL Decoding Zone
Spoofing Vulnerability in Internet Explorer,
http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2005-0054.

341

http://www.cert.org/advisories/CA-2003-02.html

[biblio09_20] (Viega and McGraw 2001)
Viega,John, and GaryMcGraw. Building Secure
Software: How to Avoid Security Problems the Right
Way. Reading, MA: Addison-Wesley Publishing Co.,
2001.

[biblio09_21] (Ferguson and Schneier 2003)
Ferguson,Niels, and BruceSchneier. Practical
Cryptography. New York, NY: John Wiley & Sons,
2003.

[biblio09_22] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, 2nd ed. Redmond, WA: Microsoft Press, 2003.

[biblio09_23] (Stewart 1964) Stewart,Potter.
http://en.wikiquote.org/wiki/Potter_Stewart.

342

Chapter 10. Stage 5: Creating
Security Documents, Tools,
and Best Practices for
Customers
In this chapter:

Why Documentation and Tools?

Creating Prescriptive Security Best Practice
Documentation

Creating Tools

In mid-2005, one of us (Howard) had a conversation
with a Fortune 100 customer about an interesting trend
in compromised Web servers. After the CodeRed and
Nimda worms (CERT 2001a; CERT 2001b) struck in
July and September 2001, respectively, affecting
Microsoft Web servers, Microsoft Internet Information
Services (IIS) 4 and IIS 5 became the most
compromised Web servers on the Internet. This led
Gartner Vice-President John Pescatore to advise
Gartner clients to seriously consider not using either
Web server (Gartner 2001) and to use other Web
servers instead that were perceived at the time to be
more secure than IIS. The customer wanted to know
what had happened around late 2003 because the trend

343

had changed. IIS on Microsoft Windows was no
longer the most compromised Web server
platform—Apache on Linux had taken this dubious
honor—and it has been this way ever since (Zone-H
2006). The reason, the client was told, was simple: an
important part of the Security Development Lifecycle
(SDL) is the production of easy-to-use security tools
and prescriptive security best practices.

We had produced such deliverables around late 2001
for IIS 4 on Microsoft Windows NT 4.0, IIS 5 on
Windows 2000, and IIS 5.1 on Windows XP. We also
had the IIS Lockdown Wizard (Microsoft 2001a), the
URLScan Security Tool (Microsoft 2001b), and the
IIS Security Checklist for IIS 4 (Microsoft 2001c) and
IIS 5 and IIS 5.1 (Microsoft 2001d). The tools
appealed to unsophisticated users because they could
run the tools easily to set a more secure default
configuration or to audit their configurations.
Figure 10-1 shows the IIS Lockdown tool.

344

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch10.html#iis_lockdown_tool_about_to_lock_down_lef

Figure 10-1. The IIS Lockdown tool about to lock down
("harden") an IIS 5.1 server on Windows XP Service

Pack 2 (SP2).

The checklists appealed to a more technical audience
because these more sophisticated users want to know
what knob to turn and which lever to pull; they like the
feeling of being in control, and the checklists give
them that control. It was this guidance and these tools
that enabled IIS administrators to lock down their
servers more securely, and this is what led to a
dramatic reduction in compromised IIS servers. No
code was changed, and no bugs were fixed. All we did
was give administrators help in controlling their
systems. This is key. There is no single silver bullet

345

for fixing security ills. Many security practitioners
believe that getting the code and designs right is the
path to security nirvana, and it is in large part, but that
path is strewn with human error and determined
attackers, so you must recognize that you will never
get the design and code 100% correct and that you
have to employ other security strategies to compensate
for such errors.

The Value of Automated Updates

As this chapter was being written (February 17,
2006), its author was returning from the RSA
Security Conference in San Jose. At a panel
discussion on software development processes,
one panelist commented that Microsoft Windows
was obviously no more secure than it was five
years ago because Microsoft had to make it easier
to deploy security updates through Windows and
Microsoft Update. This is an example of "security
expert myopia." There will always be security
bugs in every piece of software, and enabling easy
updates offers one massive benefit that the panelist
missed—having an easy and automated updating
process protects customers from being
compromised. This point was proven when the
famed Windows Meta File (WMF) flaw was
uncovered in late 2005 (Microsoft 2006); there
was very little damage. In fact, it was a bit of a
non-event because updates were applied rapidly to

346

the vast majority of computers, thereby making the
systems secure from attack quickly.

An always-on computer with automatic updates
enabled will be secure from attack between one
hour and two days after the update is available on
the Microsoft download servers. But the most
important statistic is the number of machines that
pick up the update. For Windows XP SP2, it’s a
staggering 95 percent of computers that take the
updates. We see the effect of automatic updates
through Windows Error Reporting (WER)
statistics; once the updates start trickling to
computers, we see a precipitous decline in WER
reports associated with the bug being fixed.
Microsoft has a complete feedback cycle that lets
us gauge the effectiveness of the patching process.

Earlier, we used the words "being in control," and we
want to focus on this. Controlling the computers under
your management—or, more specifically, managing
the software on those computers—is paramount.
Poorly maintained systems are the number one cause
of compromise, according to Gartner. In fact,
mismanagement has a larger impact than the sum of
all other conditions, including new and old
vulnerabilities and zero-day attacks (Gartner 2004).

The only way you can make sure that your customers
stay in control is to provide prescriptive security

347

guidance and tools to help them. And this is what the
rest of this chapter discusses.

Why Documentation and
Tools?
When adopting SDL, you will spend time making the
designs more secure, building more secure code with
fewer security bugs, and building tools to help confirm
that the software product is more secure. After you
have completed all these tasks, you turn the software
over to customers to help them perform the tasks for
which they procured the software. Customers will use
products in different ways, and not all customers will
use a product in its default, secure configuration. It is
important to provide detailed security information to
customers so that they can make informed decisions
on how to securely deploy a product and so that they
can understand the security implications of the
configurations decisions they have made. Because
security and usability may conflict, it is important to
educate customers on both the threats that exist and
the tradeoffs between risk and product functionality
involved in making decisions on how to operate and
deploy products.

Now let’s look at the recommendations for building
documentation and tools.

348

Creating Prescriptive Security
Best Practice Documentation
First, we want to point out that this chapter is not a
lesson in how to write documentation for your
customers. Rather, it outlines what security best
practice information you should add to the
documentation.

The first step is to inventory what sort of
documentation you have. From there, you can
determine what security information you need to add.
The following sections discuss the various forms of
documentation and offer ideas for what you should
add.

Setup Documentation
It is critical that setup documentation outline the best
practices that should be adhered to when installing
your application. The setup document should not be a
replacement for a secure, reduced attack surface
default, however. For example, adding text such as ". .
. and make sure you change the application’s admin
password to something strong" is bad, because the
setup application should enforce this.

Setup documentation is where you should add any
information of use to firewall administrators. What
ports do you open, and which protocols do you use
and why? Are there any best practices that

349

administrators should use at the firewall, for example
setting a firewall access control policy that restricts
access to your application to only a small set of trusted
hosts or to a trusted subnet?

You should also note in this document any backward
compatibility issues that cannot be addressed in the
setup application.

Are there any risks that people should know about the
setup process? For example, in Windows setup on a
virgin install, there is no way to hide sensitive data
through encryption because the cryptographic services
are not available, and even if they were, where would
you store the encryption key? So the documentation
reflects this fact. It’s a relatively low-risk threat, but
it’s worthwhile letting administrators know this.

Next, does your application work in a more secure
manner when used with other security technologies,
such as IPSec? If your application uses SSL/TLS, you
should instruct users on how to acquire a certificate
and private key. Again, this could be part of the setup
application, but sometimes you don’t know all the
appropriate information at setup time, and the setup
documentation is, therefore, the correct place to
include such information.

Be wary of upgrade scenarios. Usually on upgrades
from an older version of your software, you can’t go
changing a customer’s configuration. It is important to
document the security implications of the upgrade
process.

350

Finally, consider including instructions to lock down
("harden") the software more securely than the default
configuration. This text will probably be focused on
specific scenarios rather than on general product use.
Better yet, provide tools or scripts to help customers
lock down the software. We’ll discuss this issue later.

351

Mainline Product Use
Documentation
For this critical piece of work—the user manual—you
should have the most security-savvy person read
through drafts of the document and comment on areas
that may constitute insecure practice. For example,
text recommending that users grant themselves a
dangerous privilege or reduce the effectiveness of an
access control, such as an access control list (ACL) in
Windows or a permission in Linux, is clearly insecure.
If there is no other way to complete the task than to
perform an insecure operation, it is critically important
that the text be updated to reflect the security impact
and risk associated with the action. Also, you should
inform the reader that it’s a good idea to set the
insecure setting back to a secure state once the task is
complete.

Egregiously insecure advice should not be tolerated
and must be removed as soon as possible. Better yet, it
should not be written in the first place.

An example of really bad advice includes instructing
users to add their accounts to the local administrator’s
group to achieve a specific task when the development
team could have remedied the issue correctly during
the application design.

End-user documentation should also include sidebars
or security notes that point out the security
ramifications of enabling other features beyond those

352

included in the default installation. For example, if
your application has a baseline functionality, but a
user wants to install an optional component that is
implemented as, say, a Windows service, make sure
the user knows that for this component to work
correctly, you must open port TCP/1234 at the firewall
and that it’s recommended that the user restrict access
to the port to only the local subnet. In this example,
you’ve not only told the user what resource is required
(a TCP socket), but also a best practice for reducing
the threat of attack.

Good documentation should extend beyond just
simple security best practice. For example, if you have
an application that requires specific privileges to
operate, but the privileges are required only when
specific functionality is used, you must inform the user
of this situation. In fact, it’s best to tell users that they
can disable that privilege, and thereby reduce risk, if
they don’t use the scenario for which the privilege is
required. In our experience, technical users love this
level of information because it helps demonstrate to
them that they are in control of the system.

You should also set security expectations in your
documentation. Don’t be afraid to tell your customers
where your security boundaries lie and that your
product might have weaknesses when used in specific
situations. A great example is the Microsoft
Fingerprint Reader. In early 2006, Mikko Kiviharju
presented an interesting paper at BlackHat Amsterdam
outlining weaknesses in the hardware (Kiviharju

353

2006). However, Microsoft indicates in the
documentation that accompanies the hardware
(Microsoft 2004a) that the device should not be
considered a security device, but a convenience tool,
and should not be used to protect sensitive data:

▪ Security Disclaimer: The fingerprint reader is not
a security feature and is intended to be used for
convenience only. It should not be used to access
corporate networks or to protect sensitive data,
such as financial information. Instead, you
should protect your sensitive data with another
method, such as a strong password that you
either memorize or store in a physically secure
place. For more information, see the Security
Information topic in the on-screen Help file
installed with DigitalPersona Password Manager
software.

Backward compatibility and older protocols are often
less secure than present functionality, but they may
still be supported, and customers must be informed of
the security implications raised by enabling such older
functionality. Documentation should inform customers
of these tradeoffs and how and when to turn off older
compatibility modes to achieve the best possible
security.

You should also add a single "security best practice"
section to the base documentation. We have found that
customers find it useful to have a single location
where they can find the core security best practices.
This best practice text can also form the basis for a

354

security best practice checklist and, in some cases, a
security tool. More on this later.

If your application is big or complex, you should also
consider a single document that contains the security
information about the product. This document would
cover the security architecture of the product as well
as best practices for setup, use, development, and
maintenance. Microsoft has many such examples
(Microsoft 2005a), including checklists, guides, and
how-to articles for securing Windows Server 2003
(Microsoft 2005b), ISA Server 2004 (Microsoft
2004b), Exchange Server 2000 (Microsoft 2004c), and
SQL Server 2000 (Microsoft 2003).

Finally, you should talk to your support personnel to
determine what security challenges people have
encountered when using prior versions of the product.
Is there something you can add to the documentation
to alleviate the number of support calls made by
customers?

355

Help Documentation
Help documentation tends to be more task-oriented
than general documentation; a user presses F1 to get
help and up pops task-sensitive help. Because help is
task-sensitive, you should tailor the help to include the
security best practice for each task. This allows you to
be very specific about the advice you give.

356

Developer Documentation
If you provide an API or set of classes or objects that
developers can use to build applications on your
platform, you should include security information and
best practice for each applicable function or method
call. For example, this is something that Microsoft has
done extensively in the Microsoft Developer Network
(MSDN). Figure 10-2 shows an example of the
documentation in MSDN (in this case, within
Microsoft Visual Studio 2005, but the same document
is also available online) of the venerable (and
vulnerable) strncpy function.

357

Figure 10-2. Developer documentation for the C
runtime strncpy function, drawing the developer’s

attention to security issues when using the function.

MSDN also includes programming language–specific
security guidance for developers as well as an online
portal for security-relevant developer information
(MSDN 2006). Developers like "one-stop shopping"
for all classes of technology, including security.

358

Creating Tools
Security tools are paramount for helping users set a
secure configuration and audit against a secure
baseline. Such tools can range from simple scripts or
templates all the way to complex configuration
software. The best advice we can give is to build tools
based on real customer issues. This is how the IIS4
and IIS5 checklists evolved, and then Microsoft took
those checklists and built the IIS Lockdown tool.

Another tool example is the easy-to-use Security
Configuration Wizard (SCW) in Windows Server
2003 SP1. SCW determines the minimum
functionality required for a server’s role or roles and
disables functionality that is not required. Specifically,
SCW

▪ Disables unneeded services.

▪ Blocks unused ports.

▪ Allows further address or security restrictions for
ports that are left open.

▪ Prohibits unnecessary Internet Information
Services (IIS) Web extensions, if applicable.

▪ Reduces protocol exposure to server message
block (SMB), LanMan, and Lightweight
Directory Access Protocol (LDAP).

▪ Defines an appropriate audit policy.

359

Summary
Security documentation is important for your users
because they need to know the security implications of
their actions and configurations. You should include
guidance about locking down the system beyond the
default install, the implications of an upgrade from an
older product version, or, perhaps, the implications of
an upgrade from a competitor’s application. Your
application is more secure than the competitor’s, after
all!

When creating this documentation and building
configuration tools, make sure that you understand the
needs of the user. Don’t simply build geeky tools that
only a security expert can understand and appreciate.
The goal of this collateral is to help customers install,
maintain, and use secure software. Never lose sight of
that.

360

References

361

Bibliography
[biblio10_01] (CERT 2001a) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2001-19 ‘Code
Red’ Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL," http://www.cert.org/
advisories/CA-2001-19.html. July 2001.

[biblio10_02] (CERT 2001b) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2001-26 Nimda
Worm," http://www.cert.org/advisories/
CA-2001-26.html. September 2001.

[biblio10_03] (Gartner 2001) Pescatore,John.
"Nimda Worm Shows You Can’t Always Patch
Fast Enough," http://www.gartner.com/
DisplayDocument?doc_cd=101034. September 2001.

[biblio10_04] (Zone-H 2006) Zone-H, The Internet
Thermometer. www.zone-h.org.

[biblio10_05] (Microsoft 2001a) "IIS Lockdown
Tool 2.1," http://www.microsoft.com/downloads/
details.aspx?displaylang=en&FamilyID=DDE9EFC0-BB30-47EB-9A61-FD755D23CDEC.

[biblio10_06] (Microsoft 2001b) URLScan Security
Tool 2.0, http://www.microsoft.com/windows2000/
downloads/recommended/urlscan/default.asp.
November 2001.

362

http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.gartner.com/DisplayDocument?doc_cd=101034
http://www.gartner.com/DisplayDocument?doc_cd=101034
http://www.zone-h.org
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=DDE9EFC0-BB30-47EB-9A61-FD755D23CDEC
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=DDE9EFC0-BB30-47EB-9A61-FD755D23CDEC
http://www.microsoft.com/windows2000/downloads/recommended/urlscan/default.asp
http://www.microsoft.com/windows2000/downloads/recommended/urlscan/default.asp

[biblio10_07] (Microsoft 2001c) "Microsoft
Internet Information Server 4.0 Security
Checklist," http://www.microsoft.com/technet/
archive/security/chklist/iischk.mspx. July 2001.

[biblio10_08] (Microsoft 2001d) "IIS 5.0 Baseline
Security Checklist," http://www.microsoft.com/
technet/archive/security/chklist/iis5cl.mspx.

[biblio10_09] (Microsoft 2006) Microsoft Security
Bulletin MS06-001. "Vulnerability in Graphics
Rendering Engine Could Allow Remote Code
Execution," http://www.microsoft.com/technet/
security/bulletin/ms06-001.mspx. January 2006.

[biblio10_10] (Gartner 2004) Pescatore,John. "Stay
Ahead of Changing Software Vulnerabilities,"
http://www.gartner.com. April 2004.

[biblio10_11] (Kiviharju 2006) Kiviharju,Mikko.
Black Hat 2006, "Hacking Fingerprint
Scanners," http://www.blackhat.com/presentations/
bh-europe-06/bh-eu-06-Kiviharju/
bh-eu-06-kiviarju.pdf. January 2006.

[biblio10_12] (Microsoft 2004a) "Getting Started:
Microsoft Fingerprint Reader,"
http://download.microsoft.com/download/1/3/9/
139a8c30-34cc-4453-a449-7a1c586a3ae5/
Fingerprint_Reader.pdf. April 2004.

[biblio10_13] (Microsoft 2005a) "Server
Security," http://www.microsoft.com/technet/
security/topics/serversecurity.mspx.

363

http://www.microsoft.com/technet/archive/security/chklist/iischk.mspx
http://www.microsoft.com/technet/archive/security/chklist/iischk.mspx
http://www.microsoft.com/technet/archive/security/chklist/iis5cl.mspx
http://www.microsoft.com/technet/archive/security/chklist/iis5cl.mspx
http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx
http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx
http://www.gartner.com
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Kiviharju/bh-eu-06-kiviarju.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Kiviharju/bh-eu-06-kiviarju.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Kiviharju/bh-eu-06-kiviarju.pdf
http://www.microsoft.com/technet/security/topics/serversecurity.mspx
http://www.microsoft.com/technet/security/topics/serversecurity.mspx

[biblio10_14] (Microsoft 2005b) "Windows Server
2003 Security Guide," http://www.microsoft.com/
technet/security/prodtech/windowsserver2003/
W2003HG/SGCH00.mspx. December 2005.

[biblio10_15] (Microsoft 2004b) "ISA Server 2004
Security Hardening Guide,"
http://www.microsoft.com/technet/prodtechnol/isa/
2004/plan/securityhardeningguide.mspx. December
2004.

[biblio10_16] (Microsoft 2004c) "Securing
Exchange 2000 Servers Based on Role,"
http://www.microsoft.com/technet/security/prodtech/
exchangeserver/secmod43.mspx. February 2004.

[biblio10_17] (Microsoft 2003) "SQL Server 2000
SP3 Security Features and Best Practices,"
http://www.microsoft.com/technet/prodtechnol/sql/
2000/maintain/sp3sec00.mspx.

[biblio10_18] (MSDN 2006) Microsoft Corporation.
MSDN, Microsoft Security Developer Center,
http://msdn.microsoft.com/security.

364

http://www.microsoft.com/technet/security/prodtech/windowsserver2003/W2003HG/SGCH00.mspx
http://www.microsoft.com/technet/security/prodtech/windowsserver2003/W2003HG/SGCH00.mspx
http://www.microsoft.com/technet/security/prodtech/windowsserver2003/W2003HG/SGCH00.mspx
http://www.microsoft.com/technet/prodtechnol/isa/2004/plan/securityhardeningguide.mspx
http://www.microsoft.com/technet/prodtechnol/isa/2004/plan/securityhardeningguide.mspx
http://www.microsoft.com/technet/security/prodtech/exchangeserver/secmod43.mspx
http://www.microsoft.com/technet/security/prodtech/exchangeserver/secmod43.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx

Chapter 11. Stage 6: Secure
Coding Policies
In this chapter:

Use the Latest Compiler and Supporting Tool Versions

Use Defenses Added by the Compiler

Use Source-Code Analysis Tools

Do Not Use Banned Functions

Reduce Potentially Exploitable Coding Constructs or
Designs

Use a Secure Coding Checklist

As we mentioned in Chapter 7, the software industry
is replete with security software coding best
practices—of which very few are followed. The
Security Development Lifecycle (SDL) mandates
specific coding practices and backs up many of the
practices with tests to verify that the policies are
adhered to. This chapter outlines the high-level policy
and best practices for secure coding. The chapter is
purposefully high level because the low-level specifics

365

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s02.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s05.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s05.html

are covered in Chapter 19, Chapter 20, and
Chapter 21.

The following coding best practices must be adhered
to for new code and actively analyzed for legacy code:

▪ Use the Latest Compiler and Supporting Tool
Versions.

▪ Use Defenses Added by the Compiler.

▪ Use Source-Code Analysis Tools.

▪ Do Not Use Banned Functions.

▪ Reduce Potentially Exploitable Coding
Constructs or Designs.

▪ Use a Secure Coding Checklist.

Let’s look at each of these best practices in detail.

Use the Latest Compiler and
Supporting Tool Versions
Ultimately, code written by a developer is compiled to
a format that is executed by the computer, and the
generated code can include defenses added by the
compiler. We’ll cover this process in more detail in
the next section. You should also define which
compiler and tool flags you’ll use. These include
optimization flags, linker options, and so on. For
example, it is advised that for new code, you compile
with the highest possible warning level (/W4 in

366

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s02.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s05.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch11s05.html

Microsoft Visual C++, -Wall in GNU C Compiler
[GCC], and -w in Borland C++) and compile
"cleanly," with no warnings or errors. You must
compile cleanly with -W3 if you are using Visual
C++.

367

Use Defenses Added by the
Compiler
The newer Microsoft compilers add defenses to
compiled code. This defensive code is added
automatically by the compiler, not by the developer.
The major defensive options are the following:

▪ Buffer security check: /GS

▪ Safe exception handling: /SAFESEH

▪ Compatibility with Data Execution Prevention:
/NXCOMPAT

Buffer Security Check: /GS
The /GS flag is a great example of defensive code
added by the compiler—the compiler injects code into
the application to help detect some kinds of buffer
overruns at run time. The latest Microsoft
implementation of this defense in Microsoft Visual
Studio 2005—it was first available in Visual Studio
.NET 2002—performs the following steps when
compiling native Win32 C/C++ code:

▪ A random "cookie" is placed on the stack before
the return address. The cookie value is checked
before the function returns to the caller. If the
cookie has changed, the application aborts.

368

▪ The compiler rearranges the stack frame so that
stack-based buffers are placed in higher memory
addresses than other potentially attackable
stack-based variables such as function pointers.
This process reduces the chance that these other
constructs will be overwritten by a buffer
overrun.

▪ Code is added to protect against vulnerable
parameters passed into a function. A vulnerable
parameter is a pointer, C++ reference, or C
structure that contains a pointer, string buffer, or
C++ reference.

Best Practices

You must compile all C/C++ code with /GS.

369

Safe Exception Handling: /SAFESEH
The /SAFESEH linker option adds only safe
exceptions to the executable image. It does this by
adding extra exception-handler information that is
verified by the operating system at run time to make
sure the code is calling a valid exception handler and
not a hijacked (overwritten) exception handler.

Best Practices

You must link your code with /SAFESEH.

370

Compatibility with Data Execution
Prevention: /NXCOMPAT
The /NXCOMPAT linker option indicates that the
executable file was tested to be compatible with the
Data Execution Protection (DEP) feature in Microsoft
Windows (Microsoft 2005).

Best Practices

You must test your application on a computer that
uses a CPU that supports DEP, and you must link
your code with /NXCOMPAT.

The Microsoft Interface Definition Language (MIDL)
compiler, used for building remote procedure call
(RPC) and Component Object Model (COM) code,
also adds stricter argument checking to the compiled
code when you use the /robust switch.

As you can see, the extra defenses are cheap because
the compiler automatically adds them. Also note that
the execution time and code size overhead is tiny. In
our analyses, the potential code size or performance
degradation is balanced out by better compiler
optimizations.

371

Best Practices

If your compiler does not add extra defenses to
the code, you should consider upgrading the
compiler to one that does. This is especially true
for C/C++ compilers.

Important

Defenses added by a compiler do not fix security
bugs; they are added purely as a speed bump to
make attackers’ work harder. Defenses are no
replacement for good-quality code.

372

Use Source-Code Analysis
Tools
You must understand that, by themselves, source-code
analysis tools do not make software secure. Analysis
tools are incredibly useful, but they are no replacement
for human beings performing manual code reviews.
No tool will replace humans. Make no mistake, we are
big fans of source-code analysis tools, but people who
use these tools can fall into the traps explained in the
following section.

Source-Code Analysis Tool Traps
People fall prey to the first source-code analysis tool
trap when they think of source tools as a "silver
bullet." There is no such thing as a secure-code silver
bullet; you have to do many things to make code more
secure, and tools are just one part of the mix. Thinking
that you can run tools to find all bugs of a certain type
is a false and dangerous premise.

The next trap is mistaking false positives (also called
noise) for real bugs. For example, some common tools
report the following code excerpt as defective because
it uses the "dangerous function" strcpy:
void function(char *sz) {

char buff[32];
strcpy(buff,sz);

}
void main() {

373

function("Hello, World!");
}

This code section is not defective in any way because
the source buffer is a constant and is not controlled by
an attacker. Another common tool, ITS4 (Cigital 2000;
Azario 2002), reports the following:
C:\its4>its4 test.cpp
test.cpp:5:(Very Risky) strcpy
This function is high risk for buffer
overflows
Use strncpy instead.

Too many false positives such as this frustrate
developers because they must spend a lot of time
chasing down non-bugs. The net effect of too many
false positives is that developers eventually stop using
the tool at all.

The next issue is that many tools miss real bugs. To
reduce the amount of noise created by a tool,
developers of source-code analysis tools add heuristics
to determine bug probability. The problem with this
practice is that the tool might miss real but subtle code
bugs.

Next, source-code analysis tools tend to focus on a
subset of programming languages. For example, the
Microsoft PREfast technology in Visual Studio 2005
analyzes C and C++ code only, and Watchfire’s
AppScan is Web specific. So if your solution uses
multiple languages, you may have to invest in multiple
source-code analysis tools.

374

The final issue is that most tools find only source-code
bugs, not design errors. For example, Coverity ran its
source-code analysis tool on the MySQL database and
claimed to have found only 97 bugs (Lemos 2005).
Yet many of the security bugs in MySQL are design or
installation issues, such as "MySQL ALTER TABLE/
RENAME Forces Old Permission Checks" (OSVDB
2004).

Of course, source-code analysis tools do have many
benefits when used correctly. Let’s look at some.

375

Benefits of Source-Code Analysis
Tools
Source-code analysis tools offer two major benefits:
first, they help scale the code review process, and
second, tools can help enforce secure-coding policies.
At Microsoft, when we find an "interesting" bug class,
we create a tool or add capabilities to an existing tool
to help find the bug. Then we use the tools to query an
entire code base rapidly. Make no mistake—at this
point, we don’t think the interesting bug type has been
removed from the code; this is just the start. If the
tools find a large number of potential bugs in the code,
we update educational programs and, in some cases
the SDL process, to provide prescriptive remedies for
the bug type.

Take as an example the coding bug in Windows RPC/
DCOM that the Blaster worm took advantage of
(Microsoft 2003). The defective code looks like this:
HRESULT GetMachineName(WCHAR *pwszPath) {

WCHAR wszMachineName[N + 1]);
...
LPWSTR pwszServerName = wszMachineName;
while (*pwszPath != L'\\')

*pwszServerName++ = *pwszPath++;
...

In this code, the attacker controls the pwszPath
argument so that she can overflow the
wszMachineName buffer. This code bug was not
picked up by any tools available within Microsoft, so a

376

Perl script was rapidly written to search for the core
construct within the RPC runtime:
use strict;
use File::Find;
my $RECURSE = 1;
my $VERBOSE = 0;
###
foreach(@ARGV) {

next if /^-./;
if ($RECURSE) {

finddepth(\&processFile,$_);
} else {

find(\&processFile,$_);
}

}
###
sub processFile {

my $FILE;
my $filename = $_;
if (!$RECURSE && ($File::Find::topdir ne

$File::Find::dir)) {
Recurse is not set, and we are in a

different directory
$File::Find::prune = 1;
return;

}
only accept .cxx, .cpp, .c and .cc and

header extensions
return if (!(/

\.cpp$|\.c$|\.cxx$|\.cc$|\.hpp$|\.h$|\.hxx$/
i));

print "Checking $filename\n" if
$VERBOSE; warn "$!\n" unless open FILE,
"<" . $filename;

reset line number in case the same
file is parsed twice (duh!)

377

$. = 0;
while (<FILE>) {

Find the core coding construct (++p
= ++q or p++ = q++)

if (/*\+\+\w+\s*=\s**\+\+\w+/ ||
/*\w+\+\+\s*=\s**\w+\+\+/) {

s/^\s+//;
s/\s+$//;
print $File::Find::name . " (" . $.

. ")\n\t" . $_ . "\n";
}

}
}

Because of this bug, education was also updated to
include the defective code and direction on how to fix
the code. Microsoft Research started working on a less
noisy source-code analysis tool, which is now part of
the normal round of tools run on code as it’s written.
As you can see from this example, Microsoft created a
"quick and dirty" tool to find potentially defective
code, but the purpose was to understand how many
problematic coding constructs existed in the Windows
code base so that we could determine how bad the
problem might be. With this information in hand, we
could move resources around to get more developers
hand-reviewing code.

The second use for source-code analysis tools is to
enforce coding policy. Good tools are the best way to
enforce policies such as a ban on certain functions or
constructs. We do this at Microsoft at code check-in
time. A battery of tools runs just before a developer’s
check-in, and any bugs found by the tools are flagged

378

and triaged for repairs. Again, these tools are no
replacement for good developers; they simply
augment the code-review and code-quality process and
act as a backstop, just in case a developer makes a
mistake.

The two major source-code analysis tools from
Microsoft are PREfast and FxCop. In Chapter 21, you
can find a list of the warnings from these tools that
must be triaged and fixed.

Best Practices

You should augment your software development
process with good source-code analysis tools.
Used alone, source-code analysis tools will not
solve your source-code security issues. They are a
defensive backstop.

379

Do Not Use Banned Functions
The subject of banned functions is covered in great
detail in Chapter 19. For our purposes here, all you
need to know is that there is a population of functions
that, although fine 20 years ago, is simply not secure
enough in light of today’s threats. You can find
banned functions by using header files, code-scanning
tools, or updated compilers. An example header file
named banned.h is included on the disc accompanying
this book. The latest version of the Visual C/C++
compiler from Microsoft deprecates many functions,
and the developer is warned during code compilation.

380

Reduce Potentially Exploitable
Coding Constructs or Designs
This section may seem like a broader version of the
two prior sections, but it’s quite different. Some
commonly used coding constructs or designs are not
secure. For example, in Windows, it’s possible to
create an object with a NULL DACL—in other words,
an object with an empty access control list (ACL),
which means the object has no protection. Obviously,
this is insecure. Tools such as Application
Verifier—discussed in Chapter 12—can detect these
weak ACLs at run time, and the PREfast source-code
analysis technology built into Visual Studio 2005 will
also detect this at compile time. Therefore, code such
as this:
SetSecurityDescriptorDacl(&sd, TRUE, NULL,
FALSE);

will result in this compiler warning:
c:\Code\testDACL\testDACL.cpp(21) :
warning C6248: Setting a
SECURITY_DESCRIPTOR's DACL to
NULL will result in an unprotected object

The SetSecurityDescriptorDacl function is not
insecure, but it can be called in a way that would
render a system insecure.

Other examples of potentially vulnerable constructs in
Windows include shared writable segments and

381

executable pages. We’re not going to explain these in
detail because they are discussed in other texts
(Howard and LeBlanc 2003). On *nix systems,
examples of bad design constructs include
symbolic-link errors (Wheeler 2002; OSVDB 2006).

In C# code, you should consider wrapping
networking-facing code that performs arithmetic and
array bounds lookup with the checked operator:
UInt32 i = GetFromNetwork();
try {

checked {
UInt32 offset = i * 2;
// Do array lookup

}
}
catch (OverflowException ex) {

// Handle exception
}

Failing this, you could perform the integer arithmetic
overflow check to avoid the overhead of a potential
exception (Howard, LeBlanc, and Viega 2005).

382

Use a Secure Coding Checklist
Create a secure coding checklist that describes all the
minimal requirements for any code that is checked in
to the software product. It’s useful to have a checklist
to follow to make sure the code meets a
minimum-security bar. Although checklists are useful,
you can’t write secure code simply by following a
checklist. But doing so is a reasonable start, and it’s
useful for new employees.

383

Summary
In recent years, a great deal of attention has been paid
to secure-coding best practices, but although much
material is available, alarmingly few developers
adhere to, or are even aware of, such best practices.
The SDL mandates that coding best practices be
adhered to. These are taught during standard yearly
education for all developers, and they are enforced
through the use of source-code analysis tools. Such
tools are very useful and can help find security bugs,
but they are not a silver bullet; do not rely on any
source-code analysis tool to replace a developer’s
skills. Also, the SDL has banned certain function calls
and cryptographic algorithms that have led to security
vulnerabilities in the past. You must not simply ban
dangerous functionality—you must also provide
prescriptive replacements. In our experience,
developers have no problem adhering to security
requirements as long as you give them good guidance
and tools verify adherence.

384

References

385

Bibliography
[biblio11_01] (Microsoft 2005) Microsoft
Corporation. "Data Execution Protection,"
http://msdn.microsoft.com/library/en-us/memory/base/
data_execution_prevention.asp. MSDN, December
2005.

[biblio11_02] (Cigital 2000) Cigital, Inc. "ITS4:
Software Security Tool," http://www.cigital.com/
its4/. February 2000.

[biblio11_03] (Azario 2002) Azario,Jos. "Source
Code Scanners for Better Code,"
http://www.linuxjournal.com/article/5673. Linux
Journal, January 2002.

[biblio11_04] (Lemos 2005) Lemos,Robert. "Study:
Few bugs in MySQL database,"
http://news.com.com/
Study+Few+bugs+in+MySQL+database/
2100-1002_3-5563918.html. CNET News.com,
February 2005.

[biblio11_05] (OSVDB 2004) Open Source
Vulnerability Database. "MySQL ALTER TABLE/
RENAME Forces Old Permission Checks,"
http://www.osvdb.org/
displayvuln.php?osvdb_id=10660. October 2004.

[biblio11_06] (Microsoft 2003) Microsoft
Corporation. Microsoft Security Bulletin MS03-026.
"Buffer Overrun in RPC Interface Could Allow

386

http://www.cigital.com/its4/
http://www.cigital.com/its4/
http://www.linuxjournal.com/article/5673
http://www.osvdb.org/displayvuln.php?osvdb_id=10660
http://www.osvdb.org/displayvuln.php?osvdb_id=10660

Code Execution," http://www.microsoft.com/
technet/security/Bulletin/MS03-026.mspx. TechNet,
July 2003.

[biblio11_07] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, Second Edition. Redmond, WA: Microsoft
Press, 2003. Chapter 23, "General Good Practices."

[biblio11_08] (Wheeler 2002) Wheeler,DavidA.
Secure Programming for Linux and Unix HOWTO --
Creating Secure Software, published online. Chapter
7, "Structure Program Internals and Approach,"
http://www.dwheeler.com/secure-programs/
Secure-Programs-HOWTO/
avoid-race.html#TEMPORARY-FILES. Last updated
June 3, 2002.

[biblio11_09] (OSVDB 2006) Open Source
Vulnerability Database. Symlink Vulnerabilites,
http://www.osvdb.org/
searchdb.php?vuln_title=symlink. Last updated
January 31, 2006.

[biblio11_10] (Howard, LeBlanc, and Viega 2005)
Howard,Michael, DavidLeBlanc, and JohnViega. 19
Deadly Sins of Software Security. New York, NY:
McGraw-Hill, 2005. Chapter 3, "Integer Overflows."

387

http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx
http://www.osvdb.org/searchdb.php?vuln_title=symlink
http://www.osvdb.org/searchdb.php?vuln_title=symlink

Chapter 12. Stage 7: Secure
Testing Policies
In this chapter:

Fuzz Testing

Penetration Testing

Run-Time Verification

Reviewing and Updating Threat Models if Needed

Reevaluating the Attack Surface of the Software

You can’t test quality into a product, and you also
can’t test security into it. If the product is written in an
insecure manner, uses many insecure coding practices,
or has a large attack surface, no amount of testing is
going to make the product secure.

That said, you should provide a testing "sanity check"
of the code before release. Testing is, of course, a
necessary task, and anecdotal evidence indicates that
as product groups at Microsoft release a subsequent
product version covered by Security Development
Lifecycle (SDL), engineers tend to spend less time
testing for security bugs because the design and

388

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12s04.html

coding is more secure in the first place. (At the time of
this writing, we have no hard data to back up the
claim, however.) This observation does not trivialize
the need for the methods we will discuss; it simply
shows that to build secure software, you must get as
much right as early as possible, and testing must be
what it is supposed to be: verification. Again, you
cannot test security into a product.

The testing phase requires the following steps:

1. Fuzz Testing

2. Penetration Testing

3. Run-Time Verification

4. Reviewing and Updating Threat Models if
Needed

5. Reevaluating the Attack Surface of the Software

Let’s look at each task in detail.

Fuzz Testing
Originally developed to find reliability bugs (Miller,
Fredriksen, and So 1990; Miller et al. 1995; Miller
2005; Gallagher, Jeffries, and Landauer 2006), fuzz
testing is an effective way to find certain classes of
security bugs, too.

Fuzzing means creating malformed data and having
the application under test consume the data to see how
the application reacts. If the application fails

389

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12s04.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12s04.html

unexpectedly, a bug has been found. The bug is a
reliability bug and, possibly, also a security bug.

Note

At Microsoft, about 20 to 25 percent of security
bugs are found through fuzzing a product before it
is shipped. The vast majority of bugs are in old,
pre-SDL code, however.

Fuzzing is aimed at exercising code that analyzes data
structures, loosely referred to as parsers. There are
three broad classes of parsers:

▪ File format parsers. Examples include code that
manipulates graphic images (JPEG, BMP, WMF,
TIFF) or document and executable files (DOC,
PDF, ELF, PE, SWF).

▪ Network protocol parsers. Examples include
SMB, TCP/IP, NFS, SSL/TLS, RPC, and
AppleTalk. You can also fuzz the order of
network operations—for example, by performing
a response before a request.

▪ APIs and miscellaneous parsers. Examples
include browser-pluggable protocol handlers
(such as callto:).

Let’s focus on each parser type in more detail.

390

Fuzzing File Formats
Fuzzing file formats means building malformed files
to be consumed by your application. For example, if
your application parses and displays TIFF files, you
could build a malformed TIFF and have the
application read the file. Of course, you don’t create
just one malformed file; SDL mandates that you create
and test at least 100,000 malformed files for every file
format and every parser you support.

Important

SDL requires that you test 100,000 malformed
files for each file format your application
supports. If you find a bug, the count resets to
zero, and you must run 100,000 more iterations by
using a different random seed so that you create
different malformed files.

A generic file-fuzzing process
The process for fuzzing files is simple. It consists of
the following steps:

1. Identify all the file formats your application
supports.

2. Collect a library of valid files your application
supports.

391

3. Malform (fuzz) a file.

4. Have the application consume the malformed file,
and then observe the application.

The following paragraphs address each of these steps
in detail.

Identify all valid file formats

The first step in the file-fuzzing process is to identify
all file formats your application reads and handles. It’s
important to identify the formats your code handles. If
the file data is handed off to a platform API—such as
Microsoft Windows BitBlt or Graphics::DrawImage
(Microsoft 2006a) or the open-source LibTIFF library
(Still 2002)—and the fuzzed file causes the application
to fail, the bug is probably not in your code but rather
in code developed by other parties. On failure, a stack
trace will confirm this.

Tip

A useful list of extensions is the MIME-handler
list file extension list. A MIME-handler is an
application invoked when a file is double-clicked
by a user. Such handlers must be fuzzed because
they are a common social-engineering attack
vector.

392

Your application should fail gracefully if faced with a
file format it simply does not render or understand.
Similarly, any component you have developed should
fail gracefully and, just as important, bubble errors up
to the next level of code.

393

Collect a library of valid files

You should gather as many valid files from as many
trusted sources as possible, and the files should
represent a broad spectrum of content. Aim for at least
100 files of each supported file type to get reasonable
coverage. For example, if you manufacture digital
photography equipment, you need representative files
from every camera and scanner you build. Another
way to look at this is to select a broad range of files
likely to give you good code coverage.

Note that some file types are hard to fuzz—for
example, files that are encrypted or have a digital
signature associated with them. You should test with
the signature checking—you do check the signature,
right?—in your code enabled and disabled during
fuzzing. In some cases, the procedure can be more
complex than this if there are layers of code below
your code that require decrypted data or a signature
check before your code accesses the bits.

You should continue to build on this library over time
as you define new formats or new format variants.

394

Malform a file

The work really starts when you begin malforming a
file. You need to build or use a tool that chooses a file
at random, malforms the file, and then passes the file
to the software under test (van Sprundel 2005, Sutton
and Greene 2005, Oehlert 2005).

The two broad classes of file fuzzing are smart fuzzing
and dumb fuzzing. Smart fuzzing is when you know
the data structure of the file format and you change
specific values within the file. Dumb fuzzing is when
you change the data at random. For example, PNG
files start with a well-known signature followed by a
series of blocks, named chunks (Milano 1999). The
signature is 8 bytes long and must have the following
value:

0x89 0x50 0x4E 0x47 0x0D 0x0A 0x1A 0x0A

Each chunk has the following format:

▪ 4-byte length. The number of bytes in the data
field

▪ 4-byte type. The name of the chunk (such as
IHDR or IDAT)

▪ n-byte data. The data, the format of which
depends on the chunk type

▪ 4-byte CRC (cyclical redundancy check). A
CRC-32 calculated from the data

395

The IHDR chunk type always follows the signature,
specifies image dimensions and color information, and
has the following format:

▪ 4-byte width. Image width in pixels

▪ 4-byte height. Image height in pixels

▪ 1-byte bit depth. 1, 2, 4, 8, or 16 bits per pixel

▪ 1-byte color type. 0 for grayscale, 2 for RGB, 3
for palette, 4 for gray with alpha channel, and 6
for RGB and alpha

▪ 1-byte compression mode. Always zero

▪ 1-byte filter mode. Always zero

▪ 1-byte interlace mode. 0 for none and 1 for
Adam-7 format

It’s important to know also that PNG files structure
multibyte integers with the most significant byte first.
This structure is also called big endian (Cobas 2003).

Knowing the basic PNG format and the IHDR chunk
type, you can be very specific about how you corrupt a
PNG file. We’ll give file-corruption examples a little
later.

Dumb fuzzing is a shotgun approach: you take a valid
file and randomly corrupt it. It really is that simple.

396

On the CD

We have included on the companion disc a simple
file fuzzer named MiniFuzz (written in C++),
which demonstrates the malforming process. This
application outlines in code the steps required to
fuzz a file by using dumb fuzzing and, to a lesser
extent, smart fuzzing.

You can smart fuzz or dumb fuzz a file in many ways,
including these:

▪ Making the file smaller than normal

▪ Filling the entire file with random data

▪ Filling portions of the file with random data

▪ Searching for null-terminated strings (in ASCII
and Unicode) and setting the trailing null to
nonnull

▪ Setting numeric data types to negative values

▪ Exchanging adjacent bytes

▪ Setting numeric data types to zero

▪ Toggling, setting, or clearing high bits (0x80,
0x8000, and so on)

397

▪ Doing an exclusive OR (XOR) operation on all
bits in a byte, one bit at a time

▪ Setting numeric data types to 2^N +/–1

Looking back at the PNG format, you could be very
specific and smart fuzz a file by using the following
techniques:

▪ Set the chunk length to a bogus value.

▪ Create random chunk names. (They are case
sensitive, and the case has specific meaning.)

▪ Build a file with no IHDR chunk.

▪ Build a file with more than one IHDR chunk.

▪ Set the width, height, or color depth to invalid
values (0, negative values, 2^N +/–1, little
endian, and so on).

▪ Set invalid compression, filter, or interlace
modes.

▪ Set an invalid color type.

In the PNG example, you would also need to build a
valid CRC for each malformed file; otherwise, a CRC
failure would prevent most of the parsing code from
being exercised.

For some file formats, you should also consider
locking files, escaping data (for example, HTML
encoding), and so on.

398

Consume the file and observe the application

Finally, have the application consume the file—for
example, simply via a command-line argument that
includes the file name. As the application runs,
monitor for failures such as access violations or core
dumps, and watch for spiked CPU usage. In Microsoft
Windows, you can control a process and monitor it as
it executes, by using job objects (Microsoft 2006b). Or
you can set the fuzzing tool to be a mini-debugger by
using debugging APIs (Robbins 2003), and then you
can write failure information to a log file. The sample
fuzzer, MiniFuzz, shows how to do this.

Best Practices

You must refuzz your application every time you
update the product or parser.

If the application fails, perhaps because of a buffer
overrun or a null-pointer dereference, you can reload
the malformed file at any point and run the application
under a debugger if you are not already doing so.
When the application fails, determine the source of the
failure and fix the code. This strategy assumes the
application does not store state between invocations.

399

Best Practices

Keep all malformed files that cause your
application to fail. They will be needed to
reproduce the bug. You can also use them later to
verify that code regressions have not reintroduced
the bug.

If any security bug is found in your product, keep
the test cases that verify the existence and
removal of the bug, and rerun these tests every
time you rebuild the product to verify the bug has
not reentered the code base. You should also
consider using publicly known exploit code as a
test case. Obviously, you should run such code on
computers that are not connected to your
production network.

You should also watch for increased memory usage
over time; this might indicate a memory leak. This
leads to an important point: you should always run the
application that you are testing under a debugger or
similar tool. At Microsoft, we usually use a debugger
such as cdb, or we run the code under Application
Verifier (AppVerif) (Howard 2003). AppVerif is a test
tool that is part of the Application Compatibility
Toolset, which helps developers find bugs at run time.

400

For example, AppVerif will catch the following
classes of errors:

▪ Heap-based memory leaks and overwrites

▪ Uninitialized variables (dirty stacks)

▪ Dangerous APIs

▪ Thread local storage issues

▪ Lock usage

When fuzz testing an application, you must enable
heap checking. It is recommended that you enable
first-chance exceptions and handle checking, as shown
in Figure 12-1.

401

Figure 12-1. AppVerif set to use the SDL required and
recommended fuzz-testing settings.

Note

AppVerif is a tool for unmanaged Microsoft
Win32 code, not managed .NET code.

You inform AppVerif that your application is to be
monitored, by using the following command line:
Appverif /verify myapp.exe

The /verify command-line argument will enable the
following checks:

▪ HANDLE_CHECKS

▪ RPC_CHECKS

▪ COM_CHECKS

▪ LOCK_CHECKS

▪ FIRST_CHANCE_EXCEPTION_CHECKS

▪ FULL_PAGE_HEAP

Once the tests are complete, use the following
command line to stop AppVerif from monitoring your
application:
Appverif –disable * -for myapp.exe

402

Next, you can read the log files by first exporting them
from their native binary form to text, by using this:
Appverif –export log –for myapp.exe –with
to=c:\logs\myapp.log.txt

It is recommended that you also run the application
using fault injection:
Appverif /verify myapp.exe /faults

There is a good chance that this option will exercise
different code paths within the application as it runs.

Note

The fault injection option mimics certain common
functions failing—for example, file I/O, memory
allocations, and registry access.

Note that AppVerif does not test the application; it
simply intercepts function calls from the application to
the operating system when you run your test suite.

Best Practices

403

When fuzz testing an application, run the
application under AppVerif to detect faults earlier.

404

Fuzzing Network Protocols
Fuzzing network connections is both similar to and
different from fuzzing file formats. It is similar in that
you use an application to create malformed data. But
rather than creating files, you drop malformed packets
on the network to attack a process listening on a
network port such as a TCP (Transmission Control
Protocol) or UDP (User Datagram Protocol) socket
(Nuwere and Varpiola 2005), an RPC endpoint, or a
pipe. You should perform network fuzzing on a
private subnet because otherwise you could
accidentally attack production servers.

Note

The more message sequences a protocol uses, and
hence the more state it stores or updates, the
harder it is to reach the "deep" parts of the
protocol.

There are three effective ways to fuzz network traffic:

▪ Create bogus packets.

▪ Record-fuzz-replay packets.

405

▪ Malform packets just before they are placed on
the network or right after they are read from the
network.

We’ll look at each method in the following sections.

Create bogus packets
To create bogus packets, you must have a good
understanding of the network protocol format because
you build malformed packets based on the format.
Let’s look at an example. Microsoft SQL Server 2000
can listen on two ports: TCP/1433 and UDP/1434. The
latter port is used by SQL Server to help determine
which instances of SQL Server 2000 are available on a
computer. A serious bug in the code listening on this
port led to the Slammer worm (Boutin 2003). The data
format is pretty straightforward—it’s a one-byte
"verb" followed by a short null-terminated string. The
value of the first byte can be only 1 through 9.

The following code excerpt, written in Perl, shows
how you can create bogus UDP packets and send them
to a remote computer. The first byte is a random value
from 1 through 9, and the string is just a series of
random bytes from 1 to 2,048 bytes long.
use Strict;
use Socket;
die "Usage: <host> [port]\n" if !$ARGV[0];
my $server = $ARGV[0];
my $port = 1434;
print "Connecting to $server:$port\n";
srand 31337; # to make it easy to repro
testswhile (1) {

406

create socket
my $sock;

socket(sock, PF_INET, SOCK_DGRAM,
getprotobyname('udp')) || die "$!";

my $iaddr = gethostbyname($server);
my $sin = sockaddr_in($port, $iaddr);
build packets
format of packet is 1-byte verb

(1..9) and n-byte string
my $packetsize = int(rand(2048));

my @chars=
('a'..'z','A'..'Z',0..9,qw(! @ # $ % ^ & *
- _ = +));

my $junk = join("",@chars[map{rand
@chars} (1 .. $packetsize)]);

my $verb = 1 + int(rand(9));
$junk = pack("ca" .

$packetsize,$verb,$junk);
lob the grenade
print "Sending $packetsize bytes, verb

$verb\r";
send(sock, $junk, 0, $sin);

}

This code will crash a computer running an unpatched
SQL Server 2000 in an average of three seconds.
Obviously, some data formats are more complex than
this format used by SQL Server 2000, but building
fuzzers for complex protocols is more important than
building fuzzers for simple protocols because complex
protocols are potentially more buggy.

407

Record-fuzz-replay packets
In this testing scenario, you capture valid network
packets using a network packet sniffer, fuzz the
packets of interest to you, and then replay them. For
example, you would perform the following steps if
you wanted to test a Web application:

1. Enable a packet sniffer on the subnet.

2. Collect a few thousand (or more) HTTP packets.

3. Fuzz the HTTP packets in the recorded file.

4. Replay the fuzzed HTTP packets.

Tools such as Cenzic’s Hailstorm can automate much
of this process (Cenzic 2006).

408

Malforming packets on the fly
Another effective technique for fuzzing network
traffic is to tweak packets within the application
before sending the packets to the destination
computer. This is a classic man-in-the-middle attack.
To do this, you can place stub code in your network
code to tweak the data at random. The following
example is from a WinSock client application:
int SendData(SOCKET socket, const char
*pBuf, size_t cbBuf) {

...
int nRet = send(socket,

pBuf,
cbBuf,
0);

As you can see, this code simply sends string data to
another socket. But with a small change, the code
could be turned into fuzz code designed to stress-test
the destination application code.
#ifdef __FUZZ__
void Fuzz(char *pBuf, size_t *pcbBuf) {

const size_t FUZZ_THRESHOLD = 2; //
corrupt 2% of packets

if (rand() % 100 <= FUZZ_THRESHOLD) {
// Fuzz data

}
}
#endif // __FUZZ__
int SendData(SOCKET socket, char *pBuf,
size_t cbBuf) {

...

409

#ifdef __FUZZ__
Fuzz(pBuf,&cbBuf);
#endif // __FUZZ__

int nRet = send(socket,
pBuf,
cbBuf,
0);

Of course, make sure you disable the fuzzing code
before you ship your software to customers.

As we mentioned before, you can fuzz the data in
numerous ways, such as by flipping high bits, writing
random data, truncating the data stream, setting
null-terminators or other sentinel characters to invalid
characters, and so on.

Best Practices

When performing network fuzz testing, don’t fuzz
only data that goes from the client to the server;
build a rogue server to fuzz data going from the
server to the client.

Some formats require that you be methodical while
fuzzing. Take HTTP as an example—you should fuzz
all the subcomponents of a valid HTTP payload. For
example, you could:

410

▪ Add invalid headers (headers that are too long or
too short or that have invalid characters or names,
and so on).

▪ Change header fields (delete them, make them
too long or too short, tweak characters, or add
invalid characters—such as by setting the
Content-Length header to a negative value
[SecurityTracker 2006]).

Tip

Setting a value to –1 is often a very effective way
to change header fields because many server
implementations add 1 to this value to
accommodate for a trailing null. Server
implementations then use this value to allocate
heap memory.

▪ Duplicate valid headers.

▪ Remove or tweak sentinel characters such as the
CR/LF combinations.

▪ Change the HTML content (fill it with random
data, randomly truncate it, tweak bytes at
random, and so on).

Be wary when fuzzing XML payloads, such as SOAP
traffic, because you might end up testing the XML

411

library’s schema validation code and not your code.
The same caveat applies to RPC code.

One of the advantages of file and network fuzzing is
that once the test harness is constructed and
operational, little human effort is required to keep the
process running. Code reviews, on the other hand,
require constant and expensive human attention. Of
course, fuzzing does not replace code reviews, but it
does effectively augment the security process.

412

Miscellaneous Fuzzing
Any code that consumes, manipulates, or analyzes
data structure that comes from untrusted sources must
be parsed. Good examples are arguments to ActiveX
controls or any mobile code such as Java, Macromedia
Flash, or .NET code that could be hosted in a browser.
Identify all methods and properties to the code, and
fuzz them all systematically. A simple way to do this
is to build an HTML page that instantiates the mobile
code, and then use JavaScript to fuzz all the methods
and properties owned by the mobile code. Even the
URL that hosts the mobile control can be fuzzed. For
example, make the hosting URL very long (longer
than 1,000 characters) and see if the mobile code can
handle that if it checks to see which URL it was
loaded from.

413

Fixing Bugs Found Through Fuzz
Testing
Table 12-1 and Table 12-2 outline conservative triage
bars for bugs found through fuzz testing. These
outlines are likely to evolve as new bug classes are
discovered, so please treat them as minimum bars and
err on the side of caution.

Table 12-1. Client Code Bug Bar

Category Errors

Must Fix ▪ Write Access Violation

▪ Read Access Violation on
extended instruction
pointer (EIP) register

Must Investigate (Fix is
probably needed.)

▪ Large memory allocations

▪ Integer Overflow

▪ Custom Exceptions

▪ Other system-level
exceptions that could lead
to an exploitable crash

▪ Read Access Violation
using a REP (repeat string
operation) instruction
where ECX is large (on
Intel CPUs)

414

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch12.html#server_code_bug_bar

Category Errors

▪ Read Access Violation
using a MOV (Move)
where ESI, EDI, and
ECX registers are later
used in a REP instruction
(on Intel CPUs)

Security issues unlikely
(Investigate and resolve
as a potential reliability
issue according to your
own triage process.)

▪ Other Read Access
Violations not covered by
other code areas

▪ Stack Overflow exception
(This is stack-space
exhaustion, not a
stack-based buffer
overrun.)

▪ DivideByZero

▪ Null dereference

Table 12-2. Server Code Bug Bar

Category Errors

Must Fix ▪ All errors leading to an elevation
of privilege (EoP) or a significant
denial of service (DoS). This is
generally everything in all
sections of the client fix bar, with

415

Category Errors

the exception of large memory
allocations (potentially).

Must Investigate
(Fix is probably
needed.)

▪ Large memory allocations.

Security issues
unlikely
(Investigate and
resolve as
potential
reliability issue
according to your
own triage
process.)

▪ None.

It is important to understand that every crash or
unexpected error is an indication of an implementation
issue, so you should always investigate such
abnormalities. After you understand the problem, draw
security-related conclusions. Never underestimate your
enemy—if you don’t test your code, somebody else
will do it for you and with harsher consequences.

If you hit a large number of bugs in the code by fuzz
testing, stop what you’re doing and start a deep code
review. Code reviewing and fuzzing work very well
together. If you find no bugs even after 100,000
iterations, we recommend that you make sure your

416

fuzzing tool is creating invalid files. If you have
access to code coverage tools, verify that the fuzzing
is exercising large code areas. If all looks well,
congratulations are in order!

Finally, never lose sight of the value a small number
of computers has to fuzz testing. Iterating 100,000 or
more files can be time consuming, so dedicating a
small number of machines to the fuzzing process is
beneficial.

Let’s now turn our attention to other forms of security
testing required by SDL.

417

Penetration Testing
Penetration testing (pentesting) is a testing process
designed to find vulnerabilities in information
systems. You should start to plan your pentest work
during the testing phase of the product development.

Best Practices

Technically speaking, you can start pentesting any
time there is enough code to make a pentest cost
effective. Don’t start it any later than the
product-testing stage; if you start it too late, you
might not have time to fix serious issues, or you
might delay product shipment.

Historically, such testing has been used to test
networks, host operating system configurations, and
patch levels (Corsaire 2004). But if you are building a
complex software product, you should consider
running a pentest prior to shipping the product to
customers.

Consider using a third-party company to perform the
pentest if you do not have the appropriate skills
in-house. Because you probably don’t know how good
your own pentest skills are, you should initially
engage a respected security company to pentest your

418

application. Make sure you choose a trustworthy
company that has expertise in the programming
languages you use and the technologies you are
building.

A description of what is required to perform a pentest
is beyond the scope of this book.

Best Practices

Every time you find a security vulnerability in
your application, build a small test plan to verify
the existence of the bug, and then later reuse the
test to verify that the code is fixed. Build on this
series of tests as new vulnerabilities are found,
and rerun all the tests on an ongoing basis.

419

Run-Time Verification
The final testing method is run-time verification
testing using tools such as AppVerif to detect certain
kinds of bugs in the code as it executes. AppVerif has
been discussed earlier in the chapter as part of the
fuzz-testing process. However, its usefulness extends
beyond fuzz testing; it can also be used to find serious
security flaws during normal testing or analysis.
Hence, you should run the application regularly by
using AppVerif, and you should review the log files to
make sure there are no issues that require fixing.

Microsoft Windows includes a tool called Driver
Verifier (Verifier.exe) to perform similar tests on
device drivers (Microsoft 2005).

420

Reviewing and Updating Threat
Models if Needed
Threat models are invaluable documents to use during
security testing. Sometimes functionality and
implementation change after the design phase of a
project. Threat models should be reviewed to ensure
that they are still accurate and comprehensively cover
all functionality delivered by the software. Threat
models should be used to drive and inform security
testing plans. Also, the riskiest portions of an
application—usually those with the largest attack
surface and the threats that are the highest risks—must
be tested the most thoroughly.

421

Reevaluating the Attack
Surface of the Software
Attack surface is described in Chapter 7. Software
development teams should carefully reevaluate the
attack surface of their product during the testing stage
of the SDL. Measuring the attack surface will allow
teams to understand which components have direct
exposure to attack and, hence, have the highest risk of
damage if a vulnerability occurs in those components.
Assessing the attack surface will enable the team to
focus testing and code-review efforts on high-risk
areas and to take appropriate corrective actions. Such
actions might include deciding not to ship a
component until it is corrected, disabling a component
by default, or modifying development practices to
reduce the likelihood that vulnerabilities will be
introduced by future modifications or new
developments. After the attack surface has been
reevaluated, the attack surface should be documented
to reflect the rationale for the attack surface.

422

Summary
Security testing is often considered a subject known
only to a few. This might be factual, but non-security
experts can perform a lot of effective security testing,
most notably fuzz testing. You must fuzz test all file
formats your application consumes, and if your code
has more than one parser per format, each parser must
be tested separately. SDL mandates an absolute
minimum of 100,000 fuzzed files per format and
parser. You should also fuzz test your network
protocols by using man-in-the-middle techniques
discussed in this chapter.

For critical products, you should also consider starting
an external penetration-testing program. Do not
perform this testing in-house if you do not have a
dedicated and experienced penetration-testing team.
Amateurs will find few, if any, security bugs of merit.

Finally, you must re-review the product threat models
and use the results of this review as part of the attack
surface evaluation. For commercial software, you
should constantly strive to reduce the attack surface
over time.

423

References

424

Bibliography
[biblio12_01] (Miller, Fredriksen, and So 1990)
Miller,BartonP., LarsFredriksen, and BryanSo. "An
Empirical Study of the Reliability of UNIX
Utilities," http://citeseer.ist.psu.edu/
miller90empirical.html.

[biblio12_02] (Miller et al. 1995) Miller,BartonP.,
DavidKoski, CjinPheowLee, VivekanandaMaganty,
RaviMurthy, AjitkumarNatarajan, and JeffSteidl.
"Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services,"
http://citeseer.ist.psu.edu/miller95fuzz.html.

[biblio12_03] (Miller 2005) Miller,BartonP. "Fuzz
Testing of Application Reliability,"
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html.
December, 2005.

[biblio12_04] (Gallagher, Jeffries, and Landauer
2006) Gallagher,Tom, BryanJeffries, and
LawrenceLandauer. Finding Security Bugs. Redmond,
WA: Microsoft Press, 2006.

[biblio12_05] (Microsoft 2006a) Microsoft
Corporation. "GDI+," http://msdn.microsoft.com/
library/en-us/gdicpp/gdiplus/gdiplus.asp. MSDN,
2006.

[biblio12_06] (Still 2002) Still, Michael, IBM
Corporation. "Graphics programming with

425

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

libtiff," http://www-128.ibm.com/developerworks/
linux/library/l-libtiff/. developerWorks, 2002.

[biblio12_07] (van Sprundel 2005)
vanSprundelmIlja. "Fuzzing," http://static.23.nu/md/
Pictures/FUZZING.PDF.

[biblio12_08] (Sutton and Greene 2005)
Sutton,Michael, and AdamGreene, iDEFENSE Labs.
Black Hat 2005, "The Art of File Format
Fuzzing," http://www.blackhat.com/presentations/
bh-jp-05/bh-jp-05-sutton-greene.pdf. July 2005.

[biblio12_09] (Oehlert 2005) Oehlert,Peter.
"Violating Assumptions with Fuzzing," IEEE
Security and Privacy, March/April 2005.

[biblio12_10] (Milano 1999) Milano,John.
Compressed Image File Formats. Boston, MA:
Addison-Wesley, 1999.

[biblio12_11] (Cobas 2003) Cobas,JuanCarlos. "The
Basics of Endianness,"
http://www.codeproject.com/cpp/endianness.asp. The
Code Project, 2003.

[biblio12_12] (Microsoft 2006b) Microsoft
Corporation. Platform SDK: DLLs, Processes, and
Threads, "Job Objects," http://msdn.microsoft.com/
library/en-us/dllproc/base/job_objects.asp. MSDN,
2006.

[biblio12_13] (Robbins 2003) Robbins,John.
Debugging Applications for Microsoft .NET and

426

http://www-128.ibm.com/developerworks/linux/library/l-libtiff/
http://www-128.ibm.com/developerworks/linux/library/l-libtiff/
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sutton-greene.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sutton-greene.pdf
http://www.codeproject.com/cpp/endianness.asp

Microsoft Windows. Redmond, WA: Microsoft Press,
2003.

[biblio12_14] (Howard 2003) Howard, Michael,
Microsoft Corporation. "Analyzing Your
Applications with Windows Application
Verifier," http://msdn.microsoft.com/library/en-us/
dncode/html/secure12112003.asp. MSDN, December
2003.

[biblio12_15] (Nuwere and Varpiola 2005) Nuwere,
Ejovi, and Mikko Varpiola, SecurityLab
Technologies, Inc. Black Hat 2005, "The Art of SIP
Fuzzing and Vulnerabilities Found in VoIP,"
http://www.blackhat.com/presentations/bh-jp-05/
bh-jp-05-nuwere.pdf. July 2005.

[biblio12_16] (Boutin 2003) Boutin,Paul.
"Slammed!" http://www.wired.com/wired/archive/
11.07/slammer.html. Wired, July 2003.

[biblio12_17] (Cenzic 2006) CenzicHailstorm,
www.cenzic.com.

[biblio12_18] (SecurityTracker 2006)
SecurityTracker. "Novell Remote Manager for
SUSE Linux Content-Length Heap Overflow
Lets Remote Users Execute Arbitrary Code,"
http://www.securitytracker.com/alerts/2006/Jan/
1015487.html. January 2006.

[biblio12_19] (Corsaire 2004) Corsaire Limited.
"Penetrating Testing Guide,"
http://www.penetration-testing.com/. 2004.

427

http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-nuwere.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-nuwere.pdf
http://www.wired.com/wired/archive/11.07/slammer.html
http://www.wired.com/wired/archive/11.07/slammer.html
http://www.cenzic.com
http://www.securitytracker.com/alerts/2006/Jan/1015487.html
http://www.securitytracker.com/alerts/2006/Jan/1015487.html
http://www.penetration-testing.com/

[biblio12_20] (Microsoft 2005) Microsoft Help and
Support. "How to Use Driver Verifier to
Troubleshoot Windows Drivers,"
http://support.microsoft.com/
default.aspx?scid=kb;en-us;244617. Last Review:
January 2005.

428

Chapter 13. Stage 8: The
Security Push
In this chapter:

Preparing for the Security Push

Training

Code Reviews

Threat Model Updates

Security Testing

Attack-Surface Scrub

Documentation Scrub

Are We Done Yet?

When Microsoft first embarked on the journey called
Trustworthy Computing in 2002, the first major foray
into changing the software development process was
the security push. The goal of the push was simple: to
hunt for security bugs, triage them, and fix them once
the push was complete. The problem with doing

429

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch13s05.html

security this way is that security pushes are not a
sustainable way to produce secure software because a
push misses the point of building secure systems.
Building secure software requires you to reduce the
chance that security bugs are created in the first place,
and hunting for bugs late in the process is anathema to
"getting it right" early in the process. Just after Bill
Gates announced Trustworthy Computing, all major
Microsoft products went through a security push. The
products included Microsoft Windows Server,
Exchange Server, SQL Server 2000, and Office.

But the security push has a place in the Software
Development Lifecycle (SDL), which requires that
teams use the push primarily to focus on legacy
code—in other words, code created before the current
development cycle. However, a security push is not a
"quick fix" for insecure code. Do not for one moment
think you can put off security until the security push.

Important

Do not put off focusing on security until the
security push. Doing so is an egregious violation
of the SDL.

A security push occurs after a product has entered the
verification stage and has reached code and feature
complete (often around the beta time frame). Because

430

the results of the security push might alter the default
configuration and behavior of a product, a final beta
test release should be planned after the security push is
complete and all bugs and changes required based on
the push have been resolved.

Note

Anecdotally, product team members have told us
the push is hard work but that it gives the team a
valuable chance to focus on "nothing but
security."

All software that is not brand-new uses some form of
legacy code. Invariably, this code was written when
less was known about building secure software or, in
many cases, when security was not a main project
objective. The push targets mainly this older code. We
expect the need for security pushes to dwindle over
time as old code is removed or upgraded to the quality
of newly created code. Eventually, the need for a
security push will diminish because new and earlier
code is more secure. In fact, the authors believe the
push might eventually be no longer needed.

431

Important

The goal of a security push is to find bugs, not to
fix them. Fixing is done after the push.

The security push is not restricted to code. The main
tasks during the push are as follows:

▪ Training

▪ Code reviews

▪ Threat-model updates

▪ Security testing

▪ Documentation scrub

We’ll look at each of these in detail shortly, but first
we want to outline the preparation process for a
successful security push.

Preparing for the Security Push
A successful push requires plenty of planning, and
time for the push must be built into the schedule from
the outset. If you tack the security push onto the
schedule at a late date or as a "surprise event," you’ll
lose the benefits of the push. The person responsible
for security of the product should drive the push,
which includes setting up the push leadership team. In

432

our experience, this team includes a small number of
people representing all product design and
development disciplines, such as development, testing,
documentation, design, and project management, as
well as one or more people from the team that owns
the schedule and ultimately delivers the software to
customers. At Microsoft, this team is usually the
release management team, with assistance from a lead
program manager.

At the outset, you should set up a security push Web
site with push details, including the goals of the push,
expected time frames, and a list of tasks per
engineering discipline. The rest of this chapter outlines
the recommended tasks.

Also, the Web site should have links to bug databases,
incoming bug counts, and other up-to-date
information. Make sure to keep this site current.

On the subject of bug databases, we’ve found that it’s
useful to store security-push bug information in a
separate bug-tracking database, if possible, owing to
the possible high bug count. At the end of the push,
this separate database is triaged for bugs that should be
included in the main project bug-tracking database. If
it’s infeasible to maintain a separate bug database,
make sure you mark all push-related security bugs as
"HowFound = Security Push".

433

Push Duration
The push is complete when the required tasks are
complete, not when some arbitrary amount of time
elapses. Common exit criteria follow:

▪ All personnel are up to date on security training.

▪ All high-priority (Pri1) source code has been
reviewed and signed off.

▪ All Pri1 executable code has been signed off by
the test owners.

▪ All threat models have been reevaluated and
updated (or, for very old components or products,
threat models have been created for all
components).

▪ The attack surface has been reanalyzed, and the
appropriateness of the default attack surface has
been confirmed.

▪ All documentation has been reviewed for correct
security guidance.

Best Practices

Make the exit criteria crisp and actionable, and
then broadly communicate the criteria to the team.

434

Obviously, you can save time spent on the push by
making sure the threat models and documentation are
up to date. Also, as the quality of older code improves
over time, the push duration will diminish.

For large products at Microsoft such as Microsoft
Windows, Office, and SQL Server, a push typically
lasts no less than six weeks. For smaller products, the
duration is typically no less than three weeks.

435

Training
At an absolute minimum, the software development
team will need training on what to expect during the
security push as well as on push logistics. Some
employees might also need to attend technical
security-related training, so holding extra technical
classes is worthwhile. These technical classes are
especially useful if a high percentage of the team
members are approaching their training anniversary.

Best Practices

Our group performs a good deal of security
training for teams about to start a security push.
We usually fine-tune existing class material so
that it’s completely relevant to the team being
trained.

The push logistics explanation should start with a
short (perhaps 15-minute) introduction by a senior and
well-respected individual, who emphasizes the
importance of the security push.

436

Note

During the famed Windows Security Push of
2002, we provided a series of training events for
each development discipline, and each training
event was launched by a vice president. This
provided a great deal of much-needed gravitas and
emphasized Microsoft’s commitment in the early
days of Trustworthy Computing.

437

Code Reviews
No one really likes to review code for bugs, especially
code written 10 or more years ago. Given the
opportunity to review old code or work on a new, cool
feature, developers will lean toward the latter. It’s just
human nature. Reviewing code is slow, tedious, and
mind-numbingly boring. Unfortunately, all code that
runs on computers and is used as part of your software
must be reviewed, regardless of age. Attackers don’t
target only new functionality; they target all
functionality. Make no mistake: the attackers will
attack code regardless of its age. In fact, in some
cases, it’s worth the attacker’s time finding bugs in
older code because more people will have older
versions of the software installed. The situation is
compounded if the code is common to multiple
versions of the product.

Important

Attackers attack all code, so waiting to make the
code more secure in the next version of the
product is not a good solution for protecting
customers. You must secure the currently
supported versions, too.

438

The first step in security code review is to build a
database of all the files and assign an owner to each
source code file. At this stage, don’t exclude any code
from the review; include everything. Many
source-code repositories don’t store the source code
file "owner." In this case, you can usually use the
name of the last person who updated the file. Create a
table in a database with the following fields:

▪ File name. The name of the file, including the
directory where it’s stored.

▪ File owner. The name of the file owner.

▪ Priority. The priority for reviewing the code.
Ratings range from 1 to 3, with 1 being the
highest priority.

▪ Reviewed by. The name of the person who will
review the code. If you plan to have multiple
people review the code, you might want to make
this a separate table.

▪ Reviewed. A field with only three possible
values: Yes, No, and Partial.

▪ Comments. Any comments about the file that
might be of interest to people reviewing the code.

Populate the table with the file and owner information.
Of course, you should use a tool to do this; don’t do it
manually. If you are using Microsoft Visual Studio
2005 Team Foundation Server, you can query the
source code repository from within the system itself or

439

create a Microsoft Office Excel PivotTable of the data
you want. If you are more development-inclined, you
can access the source code database programmatically.

The next step is to determine review priority. Much of
this identification should be driven by the threat
model. The highest-risk components that the threat
model identifies are the high-priority code segments
for review. That said, you can follow some simple
rules to help determine priority:

▪ Code running by default, listening on the Internet,
or connecting to the Internet is Pri1.

▪ Code with numerous prior vulnerabilities is Pri1.

▪ Code executing with high privilege (for example,
SYSTEM, administrator, root) is Pri1.

▪ Security-related code (for example,
authentication, authorization, cryptographic, and
firewall code) is Pri1.

▪ For .NET code, unverifiable code is Pri1. You
can use the PEVerify tool (Microsoft 2006) to
determine whether Microsoft intermediate
language code is verifiable.

▪ Code that parses data structures from potentially
untrusted sources is Pri1.

▪ Optionally installed code that runs with user
privilege, or code that is installed by default that
doesn’t meet any Pri1 criteria, is Pri2.

440

▪ Setup code is generally Pri3 except for the code
portions that set access controls or handle
encryption keys or passwords. Consider these
latter components Pri1 because of the sensitivity
of the data and the possibility of getting default
permissions settings wrong or leaving a password
that’s supplied at installation time in the wrong
place. (We’ve been surprised at how many times
we have seen this in the past [Secunia 2004].)

▪ The Q/A or test lead, not the development team,
must agree with the priority list.

Code reviews should also cover sample code you
make available to others who build on your code.
Prioritizing sample code is a little harder than shipping
code, but a good approach is to consider how your
users will apply the sample code. If it is template code
that requires minor modification to use in production
environments, and it fits any of the Pri1 criteria noted
in the previous list, the sample code is Pri1.

More Info

For more information on the tasks involved in
performing a code review, refer to Appendix D,
"A Developer’s Security Checklist," in Writing
Secure Code, Second Edition, as a minimum
checklist of security issues to be aware of during

441

code reviews (Howard and LeBlanc 2003). Also,
19 Deadly Sins of Software Security (Howard,
LeBlanc, and Viega 2005) and "Expert Tips for
Finding Security Defects in Your Code" (Howard
2003) provide guidelines for reviewing code for
security bugs.

Note that the owner does not review the code but,
rather, nominates someone else to review the code.
One best practice is to simply have two owners swap
their source code files and then review each other’s
code. You might sometimes need to balance the
workload equitably among code reviewers. If a
reviewer finishes her assigned code, she should help
others review their assigned code. But again, a
reviewer should not review her own code.

Executable-File Owners
Finally, you must build a list of all the executable files
(.exe files, dynamic-link libraries, COM objects,
assemblies, script files, and so on) that make up the
product, and you must assign a test owner to each
component. Again, create a table with the following
columns:

▪ Executable file name. The full path of the
executable file

▪ Test owner. The name of the test or Q/A person
in charge of testing this component

442

▪ Priority. Priority for reviewing the component,
on a scale of 1 to 3, with 1 being the highest
priority

▪ Signed Off. Yes or No

▪ Comments. Any comments about the component
or the sign-off procedure

The goal of this task is to have the test people sign off
on all high-risk executable components within the
product. A successful sign-off means that the test team
has agreed with the following:

▪ The code that makes up that component has been
reviewed.

▪ The component has all appropriate security tests
in place.

▪ The component’s threat models are up to date and
accurate.

▪ The component’s attack-surface documentation is
up to date and accurate.

Make no mistake, assigning executable-file owners is
a very important substep in the SDL process and
should not be taken lightly.

443

Threat Model Updates
The architects and program managers need to review
the threat models one more time. We know that it
might seem like there has been a great deal of focus on
threat models, but they are very important. As we
write this chapter, Windows Vista starts its
verification phase, in which threat models are
reviewed to make sure that they are complete and
correct. The beauty of doing this is that you can
ascertain which areas the various component groups
might have missed, if indeed they have missed
anything. The critical portions of the threat model to
look at are described in Chapter 9. To recap, here are
some of the authors’ favorite things to look for in a
threat model during the security push:

▪ Determine whether the data flow diagram (DFD)
needs to be changed since its last review.
Software design changes that happen between the
design phase and verification phase should be
reflected in the DFD and, hence, the threat model
as a whole.

▪ Make sure all DFD elements are mapped to
appropriate STRIDE threat categories.

▪ Look at all the entry points into the system. Make
sure the list is complete and has not changed
since the last review.

444

▪ Look at all the anonymous network-facing
interfaces to the system. Should they be
authenticated or restricted to a local subnet or list
of trusted Internet Protocol (IP) addresses?

▪ Make sure all the sensitive data stores are
correctly protected. This protection often includes
an access control list (ACL) review.

▪ Make sure all data flows carrying
security-sensitive data are adequately protected.
This includes protection from disclosure (using
encryption) and tamper detection (using message
authentication codes or digital signatures).

445

Security Testing
You might be thinking, "Didn’t the prior chapter
discuss security testing?" The answer is a resounding
yes, but security-push testing has a slightly different
focus. You can still employ many of the testing
techniques discussed in the previous chapter, but
testing during the push focuses on the highest-risk
components only. It’s also good to do one last
validation to make sure that you have a list of all file
formats parsed by your code and that fuzz tests are in
place for all of those file formats.

446

Attack-Surface Scrub
Program management drives the task of reevaluating
your attack surface during the security push, providing
two major benefits. The first is general "good security
hygiene": is your product exposing just the right
amount of functionality to the correct users without
putting them unnecessarily at risk? The simple list that
follows will help you drive your attack-surface scrub:

▪ Count all the open ports, sockets, SOAP
interfaces, remote procedure call (RPC) end
points, and pipes. Are they all needed by default?

▪ Verify that all unauthenticated network entry
points are needed. Can they be authenticated by
default?

▪ Verify that all network entry points are restricted
to the correct subnet or set of trusted source
addresses.

▪ Verify that every process you run uses the right
level of privilege to get the tasks done. Can you
shed some privileges to protect customers?

▪ Verify that the ACL is correct for every object
you create. If you inherit base operating system
ACLs in Windows, your code is probably correct
because the operating system ACLs are likely to
be good.

447

▪ If you use datagram protocols, must your code
listen on datagram protocols by default? Can you
use stream protocols by default and allow users to
opt in to datagram support if they need it and
understand the risks?

The second benefit of reanalyzing the product’s attack
surface is that it helps drive the priority ranking for the
code review task. A review of attack surface will
allow teams to understand which components have
direct exposure to attack and, hence, the highest risk of
damage if a vulnerability occurs in those components.
Obviously, the highest-risk code must be reviewed the
most thoroughly.

After the attack surface has been reevaluated, the
attack-surface document should be updated as
appropriate. The attack-surface document explains
your attack-surface rationale by asking questions such
as Just why is that port open? and Why is a specific
ACL set this way?

On the CD

You will find an attack-surface rationale
document on the book’s companion disc.

448

Documentation Scrub
Finally, the writers and editors involved in building
the end-user documentation should review all their
draft documentation to verify that the security best
practices are correct and that the documentation does
not recommend potentially bad practices. If the
documentation provides code examples, they should
show secure coding practices.

Seriously consider adding "Security Best Practice" and
"Security Alert" sections to each topic outlined in the
documentation if this has not already been done.
Better yet, add a security icon to highlight such
sections.

Your users should be informed of the security
ramifications when enabling or changing functionality,
but never lose sight of who the customer is. For
example, if your product is used by network
administrators and a setting is changed, the security
ramifications of that change should be made known to
the network administrators. You might include text
like this:

▪ Security Issue: Enabling this functionality opens
port TCP/1067 to anonymous and authenticated
users on the local subnet.

An Important Note About Communications

449

Constant communication to the software
development team about the progress of the
security push is absolutely critical to the push
success. Communication could include the
following:

▪ Regular e-mail messages from push
leadership to the development team to outline
progress

▪ An intranet site with live statistics

These two forms of communication should include
the following:

▪ Number of bugs found.

▪ Number of new bugs opened in the last 24
hours.

▪ Number of files and amount of code
reviewed, threat models reviewed, tests
executed, and so on. A chart should be
provided to show progress and the glide-path
down to push completion. A glide-path shows
how the progress statistics trend toward a
finish date.

▪ The names of the top bug hunters. Include
information such as who has found the most
bugs so far and who has found the most bugs
in the oldest code.

450

▪ Funny stories or anecdotes. Although a
security push is serious business, adding a
human touch makes it a little less austere.

Note

We often add a little levity to the security push by
having competitions and spot prizes. One of the
bigger prizes is awarded to the person who finds a
bug written by the most senior person. The prize
is even more valuable if the senior person is
currently a vice president or even more senior!

451

Are We Done Yet?
We have already touched on this topic a little in this
chapter, but it’s worth repeating: The security push is
finished when the approved security push tasks are
complete.

The amount of time and energy and the degree of
teamwide focus required for a security push will differ
for individual teams based on the state of the code
base and the team’s attention to security during the
development process. Teams that have performed the
following tasks will have a shorter security push:

▪ Rigorously kept all threat models up to date

▪ Actively and completely tested the threat model
through penetrations testing

▪ Accurately tracked and documented attack
surfaces and any changes made to them during
the development process

▪ Completed security code reviews for all
high-priority code identified and documented
development and testing contacts for all code
released with the product

▪ Adhered to stringent coding standards

▪ Rigorously brought all earlier code in the project
up to current security standards

▪ Validated the security documentation plan

452

The amount of time needed to complete the
requirements of a security push is most influenced by
the size and complexity of the product, coupled with
how much effort has gone into creating the exit criteria
requirements earlier in the development process.

There is no easy way to predict the duration of a
security push. The push duration is ultimately
determined by the amount of code that needs to be
reviewed for security because all pushes to date have
been gated by code quantity. Teams are strongly
encouraged to conduct security code reviews
throughout the development process, once the code is
fairly stable, because the quality of code reviews will
suffer if too many code reviews are condensed into too
short of a time period during the push.

Again, the push is finished when the tasks are
complete, not when an arbitrary date arrives.

453

Summary
The focus of a security push is primarily code-review
of legacy code, but it also includes updating threat
models and attack-surface documentation as well as
pointed security testing and an end-user
documentation scrub. The push allows the team to
focus on nothing but security, and the length of time
needed to complete a security push is task driven, not
date driven: the security push is finished when the exit
criteria have been met.

Make sure that time is built into the master schedule
for the security push. It’s a relatively lengthy process,
but we see these push durations diminishing over time
as the older code is brought up to the quality dictated
by current threats. If your threat models and
attack-surface documentation are up to date before you
enter the push and the amount of unreviewed former
code is small, the security push duration will also be
short.

The threat models and attack surface help drive the
code-review priority. All code in the source-code tree
should be assigned an owner. Then all high-priority
code should be reviewed by someone other than the
code owner. Bugs should be filed but not fixed at this
point; fixing bugs is done after the push.

454

References

455

Bibliography
[biblio13_01] (Microsoft 2006) Microsoft
Corporation. .NET Framework Tools, "PEVerify
Tool (Peverify.exe)," http://msdn.microsoft.com/
library/en-us/cptools/html/
cpgrfPEVerifyToolPeverifyexe.asp. MSDN, 2006.

[biblio13_02] (Secunia 2004) Secunia Advisories.
"Novell NetWare Admin/Install Password
Disclosure," http://secunia.com/advisories/11188.
March 2004.

[biblio13_03] (Howard and LeBlanc 2003)
Howard,Michael, and DavidLeBlanc. Writing Secure
Code, 2d ed. Redmond, WA: Microsoft Press, 2003.

[biblio13_04] (Howard, LeBlanc, and Viega 2005)
Howard,Michael, DavidLeBlanc, and JohnViega. 19
Deadly Sins of Software Development. New York,
NY: McGraw-Hill, 2005.

[biblio13_05] (Howard 2003) Howard,Michael.
"Expert Tips for Finding Security Defects in
Your Code," http://msdn.microsoft.com/msdnmag/
issues/03/11/SecurityCodeReview/default.aspx. MSDN
Magazine, November 2003.

456

Chapter 14. Stage 9: The Final
Security Review
In this chapter:

Product Team Coordination

Threat Models Review

Unfixed Security Bugs Review

Tools-Use Validation

After the Final Security Review Is Completed

As the product draws close to completion, an
important question has to be answered: from a security
and privacy perspective, is the product ready to ship to
customers? The goal of the Final Security Review
(FSR) is to answer this question. Performed by the
central security team, the FSR is not only a critical
part of the Security Development Lifecycle (SDL), it’s
also complex, including many important tasks.

Before a software product can ship to customers, it
must successfully complete its FSR. A failed FSR
must be evaluated to determine how egregious the
issues are. If they cannot be resolved by the product

457

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch14s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch14s05.html

team, senior management must make the final call on
resolving the issues.

The product group does not perform its own FSR. At
Microsoft, the central security team performs the FSRs
for all product groups.

The FSR is a review verifying that the product group
has followed the SDL correctly during the product’s
entire development lifecycle. The word "final" makes
it sound as though this is where a good deal of security
work is performed, but it really is not. Bug scrubbing
should be done per bug as each one arises,
threat-model reviews should be performed after
implementation, and tools should be used as much as
possible throughout the process by making them part
of your build process. If the SDL is followed correctly,
an FSR should be a short affair.

Important

For a software development team that has
followed the SDL correctly, there should be few
surprises during the FSR.

This short chapter outlines the major tasks required
when performing a final security review. The
following components make up the FSR process, and
we’ll look at each in more detail.

458

▪ Product Team Coordination

▪ Threat Models Review

▪ Unfixed Security Bugs Review

▪ Tools-Use Validation

Product Team Coordination
This part of the FSR is not at all technical—it’s pure
process, but it’s process that must be performed well
for the FSR to run smoothly. First, the team must fill
out a questionnaire. Examples of questions
follow—note that many of the answers to these
questions are known well before the FSR:

▪ Is this product standalone or a service/
management/feature/add-on pack?

▪ Is any part of the product network-facing?

▪ When was the security push, and how long did it
take?

▪ Where is the attack surface documented?

▪ Where are the threat models located?

▪ Where is the source code located?

▪ Where is the bug bar documented?

▪ Where is a list—preferably a database query—of
unfixed security bugs?

459

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch14s03.html

▪ Has the security team previously reviewed the
threat models? If so, who did the review, and
what was the outcome?

▪ Are there any SDL requirements that you know
the software is not compliant with? If so, what
and why?

▪ Did you run all analysis tools, and when was the
last run of the tools?

This list is not exhaustive, but as you can see, the aim
is to help the reviewers in the following FSR tasks.

460

Threat Models Review
Threat models—explained in detail in Chapter 9—are
a cornerstone for building secure systems, and it is
imperative that the models reflect reality. During the
FSR, the threat models should again be reviewed to
verify that they are accurate, up to date, and have
appropriate mitigations in place. Refer to Table 9-12,
to determine the threat-model relevance and quality.

Pay close attention to the last time the threat models
were updated. A very old threat model is probably out
of date and inaccurate. Also look at the data flow
diagram. Does it look accurate and complete? If not,
the entire threat model is inaccurate.

461

Unfixed Security Bugs Review
If developers make mistakes writing code, and authors
make mistakes writing documentation, and testers
make mistakes building tests, doesn’t it make sense
that people will make mistakes when they enter bug
information in the bug tracking database? The purpose
of this part of the FSR is to verify that security bugs
that are marked as "Won’t Fix" are appropriate to
leave unfixed. All security bugs that exceed the
specified threshold for the product must be fixed prior
to releasing the product, so it’s important that the bug
severity or criticality is correct. We have found that
people make mistakes every now and then in entering
a bug’s criticality, due to simple human error.

If you have a large number of bugs, you need to make
sure that you have enough people reviewing the bugs
in a timely manner. At Microsoft, we normally try to
review all such bugs in less than a week, and we enroll
enough security people to meet the allotted time.
Don’t drag this phase out, even in the face of a large
number of bugs.

Also note that you should mark each bug that is
reviewed as such so that you don’t go back over the
same bugs time after time. Assuming that you are
using the bug-tracking fields defined in Chapter 6, you
should create a new field named SecAudit with the
following possible values:

462

▪ Untriaged

▪ Not a security concern

▪ Defense in depth

▪ Low severity

▪ Medium severity

▪ Important severity

▪ Critical severity

Next, mark all unfixed security bugs (where Security/
Privacy Bug Effect < > Not a Security Bug) with
SecAudit = Untriaged.

As security people review each bug, they should set
the SecAudit field to the appropriate value listed
previously.

Once all the bugs have been reviewed, the results
should be analyzed (triaged) to determine which bugs
should be fixed. Invariably, there will be some unfixed
bugs that are borderline; our only advice is to err on
the side of fixing all security bugs that exceed the
specified threshold for the product. Remember, you
are protecting your customers!

463

Tools-Use Validation
It’s important for the FSR team to verify that all
appropriate tools have been used during the
development of the software. A list of the required
tools and versions is given in Chapter 21. Use of
appropriate security testing tools, such as file and
network fuzzers, must also be reviewed and verified to
ensure that they have been executed correctly.

There are many ways to do this: the first is just to look
at makefiles and build scripts and verify that the
appropriate flags are set. For example, in the case of
the Microsoft Visual C++ tools, we make sure that the
compiler command line includes /GS and no /GS- flag
settings. We also check that the MIDL compiler uses
/ROBUST and so on.

Some settings can—and should—be validated with
tools, but some tools usage can be confirmed only by
asking the development team. For example, static
analysis tools require the development team to affirm
that they used the tools.

You must document early in the process how you are
going to determine compliance with tools
requirements because this will vary if you use
different tools.

Any compliance failure must be treated as a security
bug and triaged accordingly. Assuming that a product
team is trying to execute on the SDL responsibly, you

464

should find no surprises during the FSR when
validating tools usage.

465

After the Final Security Review
Is Completed
At the end of the FSR, the security team will either
agree that the FSR is completed and the product can
be released to customers or determine that there are
issues requiring remediation. If issues arise, each
should be looked at to determine the correct course of
action.

Handling Exceptions
In some instances, a development team might
reasonably be unable to comply with an SDL
requirement and will ask for an exception. Often such
exceptions are granted earlier than the FSR, but any
exception should be looked at holistically; a single
non-egregious issue—perhaps there are a small
number of banned application programming interfaces
(APIs) left in the code—is probably fine, but a
multitude of issues or, perhaps, a banned API that is
obviously vulnerable is not fine!

Note

Few FSRs go 100 percent smoothly!

466

Handling exceptions is complex, and no
easy-to-follow set of rules exists. Each exception
should be decided on a case-by-case basis. However,
an exception should never be granted without first
conducting a thorough assessment of the impact on the
product’s overall security if the exception is granted.

In general, if an exception is granted, the issue or
issues should be remedied in the next public version of
the product. This does not mean the next full version
of the product—it means a service pack or a "dot
release."

When you’re deciding whether to allow an exception,
it should not be uncommon to involve senior
executives in the decision process. The pros and cons
of each alternative resolution to the issue must be laid
out so that upper management can make the call.
You’ll need to gather all the appropriate background
information to aid in making the correct decision,
including:

▪ What is the issue being resolved?

▪ Why is the issue being found now? Was this
unknown at a time when the issue could have
been fixed?

▪ What are the possible ramifications, if any, of not
making the fix?

▪ What should you tell customers about the issue?
Do not rely on customers reading a readme file to
stay secure.

467

▪ What is the plan if the call is made to not resolve
the issue, and the issue turns out to be worse than
expected—or if an attack occurs?

▪ What is the plan to fix the issue if it’s not
resolved in the current product version?

▪ When can customers obtain an updated version
that fixes the issue?

▪ Are there other mitigating factors that make the
issue less important?

We can’t give concrete guidelines to any of these
questions because there are none. Again, each
exception decision must be made on a case-by-case
basis.

468

Summary
Before a product ships, a pair of critical security eyes
must validate that the software complies with the SDL
security and privacy policies. An FSR can take a long
time, but it’s critical that it be completed to make sure
that the software has achieved all the SDL
requirements for secure software. Remember that the
FSR is not a penetration test, and it’s not the point at
which you do a great deal of security work. It is a
means to determine the overall ship quality and
nothing more. At the end of the FSR, the product is
either ready to ship, or there are issues that must be
remedied. In some cases, exceptions might be granted
for reasonable deviations from the SDL, but decisions
to grant exceptions must not be made in haste and
should be made only in light of all the possible
ramifications of not fixing the deviation.

469

Chapter 15. Stage 10: Security
Response Planning
In this chapter:

Why Prepare to Respond?

Preparing to Respond

Security Response and the Development Team

This chapter explains why you need to be prepared to
respond to the discovery of security vulnerabilities in
your software. Because this entire book is dedicated to
telling you about a process to help you build secure
software, it might seem strange that we also talk about
how to respond when you fail to build secure software.
So we’ll first explain why it’s important that you do
just that.

Once we’ve discussed the need to prepare to respond
to the discovery of vulnerabilities in your software,
we’ll describe the preparations you should make
during the software development phases. Early
preparation for security response will save you from
having to figure out your plan at a time when you need
to be executing it.

470

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch15s03.html

Why Prepare to Respond?
As we write this chapter, we can hear you saying,
"These guys have spent ten chapters telling me how to
build secure software. Why are they saying now that I
have to be prepared to respond to vulnerabilities?
Won’t following all their instructions prevent me from
having to deal with security response?"

We wish we could tell you that following all the
guidance in this book to the letter will save you from
the pain of responding when people find
vulnerabilities in your software. But sadly, it’s just not
so. This section tells you why.

Your Development Team Will Make
Mistakes
It’s a fact of software development life that your team
won’t achieve perfection. However, from our
experience in applying the Security Development
Lifecycle (SDL) at Microsoft, we’re confident that if
you apply the techniques we describe in this book,
you’ll produce software with many fewer
vulnerabilities than you would if you only applied
development best practices. No matter how well you
apply common practices for producing reliable and
bug-free software, paying attention to the errors that
lead to security vulnerabilities and applying practices
that eliminate or detect those errors will result in more
secure code, fewer vulnerabilities, and less need for
security response.

471

But your development team is still made up of human
beings, and they will make mistakes, including
mistakes with security impact. At some point during
development, you’ll decide that the rate of
vulnerability discovery is "low enough" and that it has
become very difficult to discover remaining security
bugs. When that point arrives, you’ll decide to ship
your product. No matter how hard you and your team
have tried, there will be a vulnerability or two (or
maybe more) that your team should have found.

472

New Kinds of Vulnerabilities Will
Appear
If you follow the guidance in this book, you’ll build
software that is as secure as you can make it at the
point in time when you’re doing development. You
and your team will do your best, and that might be
very good indeed. But we can guarantee that the
security researchers will keep trying, and they will
find a class of vulnerability that neither you nor we
knew about, and one (or many) vulnerabilities in that
class will affect your software.

Back in the 1970s and 1980s, one of us (Lipner)
believed that it would be possible to apply highly
structured formal specification and design methods
along with formal verification of specifications and
programs to produce software that would be
substantially free of vulnerabilities. A few projects
attempted to follow this path, but all failed. (Lipner led
a project that came close to releasing an operating
system intended to reach Class A1—the highest
level—of the U.S. Trusted Computer Systems
Evaluation Criteria, or Orange Book [Karger et al.
1991].) The obvious cause of the failures was that by
the time a team had executed the highly structured
development process, the system they were producing
was obsolete and no one wanted to buy it. But even if
those highly formal processes had been efficient
enough to produce competitive products, we don’t
believe they would have achieved their ambitious

473

security goals. The reason is that new classes of
vulnerabilities continue to be discovered, and those
vulnerabilities almost always result from errors that
are below the level of detail addressed by the formal
methods. To quote Earl Boebert, a security researcher
whose experience goes back to the early 1970s,
"Security is in the weeds." Not only do you need to get
the specifications and designs right, but any error in
the machine code that is actually running can undo
you.

If you look at the history of vulnerability reports, you
can convince yourself that new classes of
vulnerabilities continue to emerge. Stack-based buffer
overruns go back to the 1980s or before (Eichlin and
Rochlis 1989), and the authors put tremendous effort
into removing them during the Microsoft Windows
Server 2003 security push. But exploitable heap-based
buffer overruns and integer overflow attacks on the
length calculations that attempt to prevent buffer
overruns are relatively new developments. For
example, the ASN.1 network protocol–parsing
component of Microsoft Windows was extensively
scrubbed for buffer overrun vulnerabilities during the
security push (CERT 2002). A researcher
subsequently pointed out that the component was
vulnerable to integer overflow attacks in the code that
was supposed to prevent buffer overruns. Of course,
our tools, training, and processes now focus on such
vulnerabilities, but at the time of that particular
security threat, we had to invoke our security response
process and release Microsoft Security Bulletin

474

MS04-007 to deal with vulnerabilities in a component
we thought we had gotten right (Microsoft 2004a).

Integer and heap overruns are far from the only
examples of new kinds of vulnerabilities. In early
2000, researchers at Microsoft discovered cross-site
scripting attacks, in which a coding error in a trusted
Web site can allow a malicious site to act on a client
with the privileges of the trusted site (Microsoft
2000a). We remember a Web security expert telling us
that everyone knew about the class of attack at
issue—and we also remember that the site for this
expert’s organization was itself vulnerable to
cross-site scripting attacks. In the subsequent six
years, the discovery of cross-site scripting
vulnerabilities on Web sites—and the discovery of
new variations of cross-site scripting vulnerabilities
such as HTTP response splitting—has become a
common occurrence (Microsoft 2005).

A final example of new kinds of vulnerabilities
concerns cryptography. One of us (Howard) got some
press coverage during 2005 (eWeek 2005) when he
remarked that Microsoft was pursuing a campaign to
remove from its products some older encryption
algorithms (including the DES, RC2, and RC4
symmetric encryption algorithms and the MD4, MD5,
and SHA-1 hash algorithms). The reason for the
removal is simple: cryptanalytic research has
advanced, and in a few years, customers won’t be able
to trust their sensitive data to the protection afforded
by those algorithms. Removing an encryption

475

algorithm is a process with a long lead time—you
have to consider compatibility with older systems,
data formats, and protocols—so it was important to
start early and make a concerted effort before a crisis
ensued. One aspect of removal was to consider how
our security response process would react if there was
a catastrophic break of one of the suspect algorithms.

476

Rules Will Change
Since Microsoft has had a security response process
(1997), we have learned, to our occasional regret, that
security is often about user and public perception, not
just about technical reality. Although you’d think that
you’d be "done" if you simply fixed code
vulnerabilities that could lead to spoofing, tampering,
repudiation, information disclosure, denial of service,
and elevation of privilege, the way things work in
practice is much more complicated. Five years ago, if
a piece of malicious software exploited a vulnerability
for which Microsoft had issued a security update, our
practice was to tell customers to apply the update in
such terms that many heard the message that any
attack or damage was their problem. If a worm or
virus exploited a legitimate product feature after the
user installed or executed the virus code, our answer
was in essence, "You should not have run that
malicious code."

Today, we take a much more expansive view. We
mobilize our security response process when viruses
and worms appear, even if the malicious code is
misleading gullible users rather than exploiting a
vulnerability, sometimes in response to vulnerabilities
or attacks related to third-party (non-Microsoft)
software and, especially, if the malicious code is
exploiting a vulnerability for which we’ve already
issued an update. In the last case, we try to ensure that
customers do apply the update, and we often release

477

cleaning or removal tools to help fix the damage done
by malicious code. Furthermore, we’ve frequently
made product changes to restrict the ways in which
malicious programs that users have been tricked into
running can exploit legitimate product features. (The
first such product change was the Microsoft Office
Outlook E-Mail Security Update, which blocks the
delivery of executable attachments to e-mail messages
[Microsoft 2000b].)

A final factor that has made security response more
important is criminals’ growing interest in software
and the Internet. When the Microsoft Security
Response Center (MSRC) was created in 1997,
viruses, worms, and malicious code were primarily a
form of Internet vandalism—a nuisance that disrupted
the use of widely deployed software. Today, there are
frequent reports of individual criminals or organized
crime releasing malicious code as part of various
money-making schemes (Naraine 2004). As the
security of Microsoft software continues to improve,
these criminals are likely to target other vendors’
products rather than simply giving up. Like the famous
bank robber Willie "the Actor" Sutton, they will "go
where the money is" and where it’s easy to steal. If
your software is used in important applications or to
process sensitive data, it’s likely to be a target, and
that means you’ll need to have a response process in
place and ready to go.

The bottom line for your development team is that
even if you get product security "right" with regard to

478

eliminating exploitable vulnerabilities, you are likely
to need a response process. The time to plan and
organize your response process is long before you
need to invoke it for the first time.

479

Preparing to Respond
There are actually two related components to
preparing for security response. The first is
establishing a security response process. At Microsoft,
the MSRC deals with all externally discovered
vulnerabilities in Microsoft products, no matter what
the products’ function or customer base might be.

We could probably write another book on security
response and the lessons learned from the operations
of the MSRC. In this section, we’ll first summarize
that unwritten book, providing an outline of the
organization, issues, and functions of a security
response center. We’ll outline the entire response
process, addressing the functions of a response center
proper and the related functions of the product
development team that works with the response center
to address newly discovered vulnerabilities.

The second component of preparing for security
response is the responsibility of each product
development team. In the next section, we’ll discuss
the response process from the perspective of the
development team, building on the overall discussion
of the response process but emphasizing the
preparatory steps that the product team must take to be
ready when vulnerabilities are discovered and
reported.

480

Building a Security Response
Center
The role of a security response center is to coordinate
your software organization’s response to newly
discovered vulnerabilities in products that you have
shipped to customers (or deployed through Web
properties or released to your internal users). The
response process proper begins with awareness of a
newly discovered security vulnerability, extends
through investigation of the implications of the
vulnerability and development of a security update or
patch, and culminates with release of the update and
the associated communications to get users to apply
the update in a timely fashion. Once the update has
been released, the response process continues to
monitor and assess the impact of the update—and the
vulnerability it addresses—on users of the software.
This monitoring function is important because the
response process is also invoked in the case of
emergencies such as the release of exploit code or a
worm, virus, or Trojan horse (we refer to this
menagerie as malware), whether the exploit code or
malware is exploiting a newly discovered vulnerability
or one for which an update is already available, or
even exploiting user fallibility, where no vulnerability
at all is involved.

We describe the response process by using the
terminology that would normally be used by a
software vendor, and we believe that essentially every

481

software vendor should have a security response
process. But user organizations such as banks,
manufacturing companies, and airlines usually have
large software development staffs and significant
Internet presence (for e-commerce, marketing,
communications, and other purposes), and that means
that they might also need a security response process.
If your organization builds software for its own use
(especially to process customer data) or if you release
software to your customers (as a product, a service
such as e-commerce, or software embedded in another
product such as a medical device), you might have
thought about contingencies that could result from a
security bug or malicious attack. A security response
center helps you handle those contingencies when (not
if) they occur and do it in a fast, organized, and
effective way.

Which Vulnerabilities Will You Respond
To?
We want to begin by emphasizing two considerations
associated with the security response center and its
functions:

1. The security response center deals only with
vulnerabilities in fielded software (this might
include applications that are fielded on the Web
to your customers or only to your in-house user
community). If you become aware of a
vulnerability in a product that’s still under
development, you just fix it. The other chapters

482

of this book deal with why and how you do that.
Of course, if you become aware of a vulnerability
in a fielded product and you’re also working on a
new product or version that might be susceptible
to the same vulnerability, you need to be sure that
the vulnerability is removed from the new version
before it’s shipped to customers.

2. The security response process deals mainly with
externally discovered vulnerabilities that are
found by security researchers, customers, or
malicious attackers outside of your organization.
You have to fix those vulnerabilities promptly
and get the fixes out to your customers before
they can be harmed. In the case of vulnerabilities
that are discovered by your engineering team, it’s
almost always a much better practice to fix them
in the next update, service pack, or new release
than it is to release a special update or patch.

The second consideration here is worth additional
discussion: if your development team finds a
vulnerability that affects shipping products, why
should you delay fixing that vulnerability until you
have a service pack or new release ready to go? The
answer is that the decision to delay is likely to keep
your customers safer. If you release a fix for a security
vulnerability in a patch or update, you will inevitably
highlight the presence of the vulnerability. Security
researchers have become very proficient at reverse
engineering security updates and very prolific at
releasing exploit code that can be used against systems

483

that exhibit the vulnerability. In particular, the
researchers are much faster at releasing exploit code
than users are at applying the patches or updates. So
your release of an update for a previously unknown
vulnerability will give the vulnerability wide visibility
and might lead to attacks against users who would
have been safer if you had never released the update.
Release in a service pack or new version is likely to
obscure the security fix by mixing it with numerous
other software changes that have nothing to do with
security. This will make the reverse-engineering task
much harder.

The previous paragraph might sound like an argument
for "security through obscurity"—and it really is. One
of the hard jobs that your response center and
development team will have to handle is deciding how
likely it is that a newly (internally) discovered
vulnerability will be found outside of your
organization and exploited. If the vulnerability is
really bad (the potential impact is very serious, and
opportunities for exploitation appear widespread and
easy to find), and if the vulnerability seems likely to
be discovered even if you don’t release an update, the
vulnerability is a strong candidate for an exception to
the rule; you should consider releasing a security
update even though the vulnerability was discovered
by your organization. If the vulnerability appears
difficult to discover, the related security update is a
strong candidate for inclusion in a later service pack.
Your security response center and your development
team will have to work together to evaluate the

484

vulnerability’s difficulty of discovery. If an internally
discovered vulnerability is very similar to one (or
more!) that has been reported by external security
researchers, it isn’t really an internal discovery, and
you should almost certainly fix it in an update. In fact,
your response process should already be finding and
fixing vulnerabilities similar to those reported
externally.

Note

Contrary to popular belief, software vendors
commonly roll up security fixes—including fixes
for internally discovered vulnerabilities—into big
updates, or "dot" releases.

485

Where Do Vulnerability Reports Come
From?
In the previous sections, we refer many times to
security researchers. You might wonder who these
security researchers are, what they are doing, and why
they do it. There’s no single answer to those questions,
but the following list gives you some examples from
the experience of MSRC:

▪ Security product vendors (especially suppliers of
intrusion-detection and vulnerability-assessment
products) have research departments that discover
software vulnerabilities and then update their
products to report vulnerable software versions or
attempts to exploit the vulnerabilities.

▪ Independent security consultants (who might be
self-employed or work for consulting firms)
conduct vulnerability research as a way of
establishing their credibility and competence with
potential clients. Some consultants also sell
vulnerability information to user organizations to
help them protect their systems and networks
from attack.

▪ Students of computer science and computer
security conduct vulnerability research to
improve their knowledge of software and
security.

▪ Various malicious parties conduct vulnerability
research to find ways to attack computer users.

486

These malicious parties are rumored to range
from individuals with criminal intent (or
individuals who want to sell vulnerability
information to those with criminal intent) to
organized crime rings bent on committing
financial fraud to national governments seeking
to steal secrets or disrupt systems or networks.

A security response center must interact with security
researchers to protect users. One of the most important
functions of the response center is to encourage
responsible disclosure. Responsible disclosure refers
to the practice whereby the finder of a vulnerability
reports to the software developer and allows the
developer to develop and release an update or patch
before publicizing the details of the vulnerability. The
developer’s security response center keeps the
researcher apprised of the status of the response and
update-development process and acknowledges the
researcher’s cooperation when the update is released.
(We’ll discuss this aspect of the process later in this
chapter in "Managing the security researcher
relationship.") Responsible disclosure is important to
the success of the response process because it
minimizes the period of time when a vulnerability is
known to potential attackers while users of the
software are without a practical way to protect
themselves from exploitation of the vulnerability.
Research from Forrester (an IT analyst firm) has
documented a measure of "days of risk" to quantify
the benefits of an effective security response process

487

and of responsible disclosure of vulnerabilities
(Koetzle et al. 2004).

488

Security Response Process
The security response process integrates steps
executed by the security response center with steps
executed by the development team. The following
section provides an overview of both sets of steps and
how they fit into the overall process as well as brief
descriptions of each of the steps. Figure 15-1 presents
an overview of the flow of the response process.

Figure 15-1. Overview of the security response process.

489

At a high level, the process flow is broken into two
parallel tracks. On the first track, the security response
center focuses on the vulnerability report,
communication with the security researcher, and
managing the process from report to update release.
The elements of this track are shown along the upper
row of blocks in the figure. Along the second track,
the development team and the specialized security
team focus on the technical details of the vulnerability,
the fix that remedies it, and the design or
implementation errors that led to the vulnerability. The
elements of this track are shown along the lower row
of boxes in the figure.

The following sections summarize the security
response activities associated with each element of
each track. As we mentioned previously, it would be
easy to produce an entire book that focuses solely on
the response process. But in the book you are reading,
we’ve limited ourselves to describing the overall
response process and some key details of each
component in hopes of giving developers of new
response processes sufficient information to get started
on the right path. If you are building a response
process, the information in this section will tell you
what issues to focus on and what steps your new
response center should expect to follow as it receives
its first vulnerability reports.

Vulnerability reporting

The response process begins with receipt of a
vulnerability report. Create and publicize a point of

490

contact that security researchers can use to initiate
communication with your security response center.
Microsoft has accepted reports sent to
secure@microsoft.com for more than eight years. You
might wish to use another e-mail alias such as security
or vulnerability-report for your response center.
Regardless of your choice, it’s important to make it
widely known and to not change it.

Note

If you believe you have found a security bug in
any Microsoft product, please send an e-mail
message to MSRC at secure@microsoft.com.

The response center must monitor the reporting alias
and respond directly (with more than just a canned
acknowledgement) to every e-mail message that is
intended as a vulnerability report and isn’t clearly
spam or traffic on a mailing list. The response center
should also monitor security mailing lists, such as
BugTraq (SecurityFocus 2005) and Full-Disclosure
(Cartwright 2002), for list traffic that might be
irresponsibly disclosing a vulnerability report. Such
reports increase the likelihood that a vulnerability will
be exploited before your teams have developed a way
for customers to protect themselves, so it’s important
to detect these reports quickly and act at once.

491

Finally, the response center needs to have a
relationship with your organization’s
customer-support or field-service teams so that new
vulnerabilities (or exploitations of vulnerabilities)
reported by customers will find their way promptly
into the response process. We recommend that the
response center be staffed with enough "duty officers"
that any report can be evaluated and acted on within a
day (24 hours) of receipt, weekends and holidays
included. Organizations with products that appear very
unlikely to be the subject of vulnerability reports
might get by with a response center that operates only
during the workweek, but you accept a degree of risk
(for your organization and its customers) by accepting
such a limitation.

When a duty officer receives a report that isn’t
obviously spam or a customer question unrelated to
security, she begins the response process. This will
surely involve sending a personal reply to the security
researcher who sent the report, perhaps with a request
for more detail or clarification. If the duty officer
believes that the report might be a real vulnerability
(not a known issue or a nonissue), she also opens a
bug in the response-center tracking database and
assigns it for investigation to the product team
responsible for the product in question.

492

Triaging

Vulnerability reports come in all varieties. At one
extreme is the report that provides a code fragment,
Web page content, or HTML request that causes code
of the researcher’s choosing to run on a vulnerable
system. The report and the impact of the vulnerability
are clear at once. At the other extreme is a vague hint
of something that might be a vulnerability, but there
are few or no specifics either because the researcher
doesn’t want to share full details (perhaps she wants to
make the response center "work" so that the
development organization will earn access to the
details of the vulnerability) or because the researcher
herself didn’t fully understand what was happening.
Unfortunately, reports of the latter kind are not
uncommon, and the fact that the researcher hasn’t
worked out all the details definitely does not mean that
the vulnerability can be ignored.

Important

All incoming security vulnerabilities must be
triaged.

Triage is the process of finding out enough about the
reported vulnerability to assess its potential impact.
The response team must reproduce the vulnerability as

493

reported and understand what a malicious attacker
might do with it. It’s important to gain a full
understanding of the vulnerability as reported and to
find out all of its implications. The security researcher
might have understood that she was reporting a
vulnerability that could be used to cause a denial of
service—to crash the application or the underlying
operating system—whereas a more sophisticated
exploit could run hostile code and allow an attacker to
"own" the system. The triage team must discover the
full implications of the report.

In our experience, the best organization to conduct
triage combines security experts with experts in the
product that is the subject of the vulnerability report.
At Microsoft, the security experts are referred to as the
Secure Windows Initiative Attack Team (SWIAT),
and they’re one component of the Secure Windows
Initiative (SWI) team that manages and executes the
SDL. The product experts come from the product
group that built the product that is the subject of the
vulnerability report; we’ll talk more about their role
later in this chapter in "Create Your Response Team"
when we discuss product-group responsibilities for
security response.

The product of the triage element of the process is an
assessment that covers:

▪ The validity of the security researcher’s report. Is
the report describing a vulnerability at all?

494

▪ The severity of the reported vulnerability.
Assuming that the report is valid, what kind of
impact could the vulnerability have on
customers’ systems if exploited? Are there
mitigating factors that would reduce the
likelihood of successful exploit in the field?
Microsoft’s triage process is based on the MSRC
Security Bulletin Rating System as described at
http://www.microsoft.com/technet/security/
rating.mspx.

▪ Any other factors that would either mitigate or
amplify the need to respond to the vulnerability
or the urgency of that need. For example, if the
vulnerability is reported to a public e-mail list
rather than directly to the response center, the
potential for immediate exploitation amplifies the
urgency of a response. Similarly, if the
vulnerability is reported by a customer who is not
pressing for an update and the vulnerability is
otherwise unlikely to be discovered, the urgency
of response is reduced, and it might well be
appropriate to consider releasing a fix in a service
pack.

When triage is complete, the response center must
have a working plan for responding to the
vulnerability. You should know whether an update
will be released, and with what urgency, as well as
about other plans such as release of public information
about mitigations and workarounds for the
vulnerability in advance of the release of an update.

495

http://www.microsoft.com/technet/security/rating.mspx
http://www.microsoft.com/technet/security/rating.mspx

Creating the fix

The product team works alongside the response center
team in the triage of each new vulnerability report.
Once triage is complete, the product team owns
responsibility for developing any fix that is required to
address the vulnerability. This is true whether the fix
will be released in a security update or patch or in a
service pack. Obviously, timing and packaging
considerations differ in these two cases, but many
important elements are common, and this section will
discuss them.

Any fix for a reported security vulnerability has three
critical aspects:

1. It must eliminate the vulnerability that was
reported.

2. It must eliminate any related vulnerabilities. A
related vulnerability might result either from
repeating the same mistake that caused the
reported vulnerability in similar code or from an
underlying design flaw that leads to a pattern of
vulnerabilities.

3. It must not unnecessarily "break" legitimate
functions of the code that contained the
vulnerability. We refer to such breakage as
"causing a regression." Much of the testing
element of the response process focuses on
eliminating regressions, but building a
regression-free fix is fundamentally a part of fix

496

development rather than of testing. As is widely
understood in software engineering, it is not
possible to test quality into the end product.

Eliminating the vulnerability as reported sounds
relatively simple, and it often is: you just find the code
that fails to test for valid input, and you add (or
correct) the test as needed. But it can be easy to make
a very fundamental mistake in designing a fix. We’ve
seen security updates (including updates released by
Microsoft) that insert a test for valid input on a path
leading to the vulnerable code instead of fixing the
vulnerable code itself.

Figure 15-2 sketches an example of how not to fix
vulnerabilities, and Figure 15-3 sketches an example
of a proper fix, in which the required test is added to
the underlying vulnerable code. Similar considerations
apply to client-server applications or components—if
the client component or code is controlled by an
untrusted user, it’s vital that the security check be
made in the server component.

497

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch15s02.html#correct_fix_for_an_underlying_vulnerabil

Figure 15-2. Partial fix for an underlying vulnerability.

Figure 15-3. Correct fix for an underlying vulnerability.

The quest for related vulnerabilities is motivated by
the fact that security researchers often look for

498

vulnerabilities similar to one that has just been fixed.
There is nothing more frustrating to response center
staff than to issue one update and immediately receive
a report of a new vulnerability that looks just like the
last one, in the same code. It’s a point of pride to
MSRC and the associated product teams that in recent
years they have become much more effective at
finding and eliminating such related vulnerabilities.

Other factors that come into play in the response
process can make the search for related vulnerabilities
especially challenging. If the circumstances
surrounding the vulnerability report suggest that a fix
is urgent—for example, because a highly exploitable
vulnerability has been made public—there might be
insufficient time to do a thorough search for related
vulnerabilities. If an initial review suggests that related
vulnerabilities are likely to be present, the response
team and product team will probably need to release
multiple updates, including an immediate update to
address the reported vulnerability and its most similar
neighbors and a subsequent update to address the
related vulnerabilities identified by a thorough search.

For an illustration of the search for related
vulnerabilities, consider Microsoft Security Bulletins
MS03-026, MS03-039, and MS04-012 (Microsoft
2003a, Microsoft 2003b, Microsoft 2004b), which
were issued in response to an initial report of a
vulnerability in the RPC/DCOM component of
Windows and subsequent reports that were received
after the initial update (MS03-026) was released.

499

MSRC determined that it was important to release the
initial update quickly, but a preliminary review of the
affected code indicated that multiple additional
vulnerabilities were present and likely to be found
once security researchers saw the initial bulletin and
update. So Microsoft initiated a process that involved
releasing the fixes for the most urgent vulnerabilities
while conducting a major review of the affected
Windows components. The process culminated with
the release of Microsoft Windows XP SP2 and
Microsoft Windows Server 2003 SP1, in which remote
anonymous access to the affected component was
blocked by default, significantly reducing the attack
surface to complement code-level changes that
resulted from a very thorough review of the RPC/
DCOM components.

Note

Requiring authenticated RPC/DCOM by default
protected Windows XP SP2 users from the Zotob
worm.

Security fixes and regressions

The development of security fixes that do not cause
regressions for legitimate users is both important and
challenging. There is no single secret to the successful
avoidance of regressions, but one step that Microsoft

500

has taken in the quest for regression-free security fixes
is to minimize the set of changes included in a security
update or patch. Microsoft often supplies individual
users (especially corporate users who have complex
internal computing environments) with a non-security
fix—often called a QFE (Quick-Fix Engineering)—to
resolve problems with specific applications or
peripheral devices. Historically, when we released a
security fix for a component that had been the target of
one or more QFEs, we included the QFEs as well as
the security fix in the update. With the release of
Windows Server 2003 and Windows XP SP2, we
changed the operation of the Windows installer and
the packaging of security fixes so that users who had
not installed any QFEs received only the security fix
when they installed a security update. Users who had
installed any QFE for the component being updated
received all of the QFEs as well as the security update.
This change in security update packaging has reduced
the rate of regressions caused by security updates,
especially for corporate customers. You’ll find more
information on security updates and regressions in the
"Testing" section later in this chapter.

501

Security fixes for multiple product versions
and locales

One final aspect of update development concerns
product versions and localization. A single
vulnerability might affect multiple product versions
(for example, Windows XP and Windows Server
2003). If it does, update development and testing must
be synchronized so that customers using all affected
versions can be protected at the same time. This
practice mitigates the risk of an attacker reverse
engineering the update for one software version and
then exploiting the vulnerability in other versions for
which the update has not yet been released. For similar
reasons, if the software is available in multiple
language versions (Microsoft Windows is available in
28 languages, and Microsoft Office in 35), the update
must be released for all versions at the same time. It
would be unseemly for the French or German
language versions of a product to remain vulnerable
because an attacker had reverse engineered an update
released only in English.

502

Managing the security researcher relationship

Security response is not just about accepting
vulnerability reports and issuing updates and the
associated security bulletins. Rather, there is a
long-term aspect to security response that involves
building relationships of trust and confidence with the
security researchers who find and report
vulnerabilities. Such a relationship is important to the
vendor because it tends to develop the conditions that
allow the response center to do its job well and
minimize customers’ exposure to vulnerabilities for
which no fix has been released.

From the response center’s perspective, the best
scenario is one in which researchers practice
responsible disclosure—keeping their findings private
until the response center has issued an update. In the
best case, researchers also understand the response
process well enough to see that a long time interval
between report and update release is not a matter of
the response center ignoring the vulnerability report or
the researcher. Rather, the long interval represents the
time required for the response center and product team
to search for related vulnerabilities, fix them all, and
release a fully tested update that has minimal
regression potential.

The response center has numerous techniques at its
disposal to help manage the researcher relationship
effectively. The first is simple communication: it’s
important to keep the researcher apprised of the status

503

of her vulnerability report (weekly updates are the
norm) and to do so in a human and personal way. The
MSRC used to avoid identifying the duty officer
responsible for an individual report. This practice
caused one researcher to conclude that the MSRC duty
officer was actually a robot or artificial-intelligence
program. Today, MSRC goes out of its way to identify
duty officers and encourage researchers to establish a
personal connection with "their" duty officers.
Because researchers tend to specialize (in the browser,
a spreadsheet application, or a database system),
building a personal relationship between researcher
and duty officer is often consistent with the efficiency
of the response process because the duty officer can
also be paired with one product team.

It’s easy for the response center to fall into the trap of
believing that security researchers are a hostile camp
bent on criticizing the products that the response
center is supporting, and on putting users at risk by
exposing product vulnerabilities. For example, one of
our colleagues in the industry has been quoted as
saying, "Most [vendors] don’t need threats to [fix
reported vulnerabilities], and some researchers have
become the problem." We refer to this attitude as a
trap because a response center that takes such an
attitude will inevitably make researchers into
adversaries who will not practice responsible
disclosure or cooperate with other aspects of the
response process. In contrast, the response center that
assumes security researchers share the developer’s
goal of making products more secure and protecting

504

customers is likely to build a cooperative relationship
with security researchers and wind up encouraging
behaviors that benefit researchers, developers, and
customers.

Since the late 1990s, almost all response centers have
acknowledged the contribution of security researchers
in the security bulletins they issue when an update is
released. Such acknowledgements constitute a basic
component of the cooperation between researchers and
the response center. Some researchers have used
public acknowledgements as indications of the quality
of their work and have built healthy security research
and consulting practices out of their success as
researchers and vulnerability finders.

Response centers might well have options beyond
acknowledgements to build more cooperative relations
with researchers. Examples include offering
organizations that conduct security research
membership in partner programs, giving researchers
early access to beta software, and offering internships
or college recommendations. (MSRC has worked
extensively with a very capable security researcher
who is still in high school as this chapter is being
written.) MSRC has also sponsored
community-building events for security researchers
and invited researchers with established track records
to speak at in-house Microsoft security training
conferences (ZDNet 2006).

Beyond keeping the security researcher apprised of the
status of her report and the schedule for an update or

505

patch, the response center might also wish to give the
researcher an early copy of the update for testing and
allow her to review and comment on the draft of the
security bulletin. Of course, both of these options
require a significant level of trust between response
center and researcher, and neither is appropriate for
the first report from a previously unknown researcher.
But they are options for building the researcher
relationship, and the response center should bear them
in mind as its relationship with an individual
researcher evolves over time.

506

Testing

Over the last 10 years, we’ve seen a steady reduction
in the time interval between our release of a security
update and the release of exploit code that shows how
to take advantage of the vulnerability or even attack
code that exploits the vulnerability for criminal
purposes such as stealing customer information or
launching distributed denial of service attacks. As a
result, our advice to customers is that they apply the
most critical security updates immediately, without
taking a long time to test the updates for regressions or
compatibility problems. We could not give such
advice unless we were confident that our security
updates wouldn’t cause such problems, and testing is
one source of that confidence. (The quality of the
security fix development itself is the other source.)

Security update testing aims to accomplish two
purposes:

1. To verify that the update in fact addresses the
reported vulnerability and any related
vulnerabilities

2. To attempt to verify that the update will not cause
regressions when users install it.

Testing to verify that the update addresses the
vulnerability involves more than simply trying any
demonstration code that the researcher supplied to see
if it still exhibits the vulnerability. The test team must
review the source code for the affected component and

507

then try variations to ensure that the fix addresses the
underlying vulnerability rather than simply blocking
one path to its exploitation. (See Figure 15-2 and
Figure 15-3 and the "Creating the fix" section earlier
in this chapter.) The test team members must also
apply their own security research skills to see that no
less-obvious variations of the reported vulnerability
remain. At Microsoft, the function of verifying
security fixes before they are released is performed by
SWIAT. In addition to applying their own skills and
experience at security vulnerability research, SWIAT
members stay aware of external trends in security
research, including vulnerability reports against
non-Microsoft products. They apply this knowledge as
they test each new security update. This last fact is
important; in numerous cases, we have found and
fixed bugs in Microsoft products before the products
were shipped by analyzing competitors’ security bugs.

Although testing to ensure that the security update
eliminates reported vulnerabilities is a practice unique
to security, testing to detect and eliminate regressions
involves more standard testing practices. Security
update testing begins with execution of the regression
test suites for the component being updated. It
includes testing with common applications as well as
with test deployments to users inside and outside of
Microsoft. No user is allowed to deploy the update
operationally until it is finally released and available
to all customers (to ensure that all customers are
protected equally). Testing by external users engages
large corporate customers who are not informed of the

508

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch15s02.html#correct_fix_for_an_underlying_vulnerabil

specifics of the vulnerabilities addressed by the
updates they are testing. These customers commit to
special agreements to provide feedback on updates and
to maintain the confidentiality of the updates they
receive (because disclosure of an update could result
in its being reverse engineered and exploited before
Microsoft is able to release the final update and protect
customers). The customers serve as proxies for other
customers in their "vertical" industry segment who are
likely to have similar line-of-business applications.
The customer testing program has proven valuable in
identifying regressions that might otherwise affect
corporate line-of-business applications and in giving
corporate customers confidence that they can deploy
updates without unacceptable risk to the continued
functioning of their applications. Although
Microsoft’s in-house testing against common
packaged applications has proven effective at
detecting potential regressions, it’s difficult to
anticipate all the ways in which corporate IT
departments have coded the applications they develop,
and it’s impossible to gain access to all (or even most)
such applications for testing. The customer testing
program is the best way we have found to detect and
eliminate potential regressions in such applications.

509

Content creation

The output of the response process goes beyond the
security update to encompass content that provides
information and guidance to customers using the
affected software. MSRC produces content directed to
IT professionals who work in enterprise IT
departments and separate content for end users
(primarily consumers who use Microsoft products at
home). The end-user content is not detailed; it usually
does little more than advise users that a vulnerability
has been found and addressed and that they should
install the update that Microsoft has released. The
rationale for providing only this level of content is that
most end users are unconcerned with the technical
details of a security update and only want to be
protected. The best and simplest way for them to be
protected is to install the update. As more and more
users enable the Automatic Update feature of
Windows that installs new security updates without
user intervention, even this content has become less
relevant. However, it’s important to make information
available to end users who might have heard about a
vulnerability and want to know what has been done in
response and to users who want information about the
functioning of their systems. End users who want
details of the vulnerability and of Microsoft’s response
are referred to the content targeted at IT professionals.

Microsoft refers to content for IT professionals as
security bulletins. Security bulletins must contain
much more detail than end-user content about the

510

vulnerability or vulnerabilities addressed by an update
and the potential consequences of their exploitation.
Where feasible, IT professional–oriented content
should also tell system administrators about
mitigations and workarounds. This information might
allow administrators to determine that their particular
configurations are not vulnerable to attack (even
without installing the update) or tell them how they
can prevent exploitation of a vulnerability without
installing the update. Such information is important to
organizations that need to schedule client or server
downtime for update installation and that have an IT
staff capable of analyzing their system environments
and protecting their systems by taking administrative
actions such as disabling system features or blocking
network ports. At Microsoft, SWIAT develops
information about mitigations and workarounds as part
of the process of triaging the vulnerability report and
searching for related vulnerabilities. MSRC produces
the security bulletin for use by IT professionals.

Security advisories

In addition to security bulletins, Microsoft has
established a practice of releasing security advisories
in situations in which there is no security update.
Security advisories are released when a circulating
worm or virus is exploiting a vulnerability for which
an update is already available or when a worm or virus
is not exploiting any vulnerability. Security advisories
are also released to convey information about
mitigations and workarounds when information about

511

a vulnerability becomes public before an update is
ready for release.

512

Press outreach

One final aspect of content creation concerns
preparation for press outreach. Vulnerabilities in the
products of major software vendors such as Microsoft
and Oracle can be newsworthy events, and the release
of an update often triggers a round of coverage in the
IT trade press and sometimes in the general press.
MSRC prepares talking points and responses to
anticipated press questions along with the other
content associated with each update. MSRC personnel
respond to press questions as needed when the update
is released. In the case of updates that address
especially serious vulnerabilities, MSRC reaches out
to the press proactively to ensure wide dissemination
of information about the vulnerability and its update
and, thus, to encourage customers to deploy the update
as rapidly as possible. Organizing for press response
can help ensure that customers are not unduly
confused or alarmed by the news associated with
security vulnerabilities and that they get a clear picture
of the risks that vulnerabilities pose and the
appropriate actions to take in response.

513

Update release

The development and testing of a security update, the
documentation of workarounds and mitigations, and
the preparation of content all come together at the
point of security update release. When all preparations
have been completed, the updates are posted to a
well-known Web site and made live for deployment
through the various automatic updating facilities
(Microsoft Windows Update, Automatic Update,
Microsoft Update, Office Update). Security bulletins
are posted to their own Web sites and an e-mail
notification (and RSS feed and MSN alert) released to
subscribers who have elected to be notified of the
availability of new security bulletins. Microsoft’s
customer support and sales organizations are also
notified about the release of the update. They are
directed to alert customers with whom Microsoft has a
direct relationship that those customers should review
the bulletin and consider installing the update or
taking other action to protect their IT systems.

One important aspect of update release is to maximize
predictability. Originally, Microsoft released security
bulletins and updates whenever they were ready on the
theory that this policy would protect customers as
soon as possible. Although the theory was valid as far
as it went, the practice had the effect of disrupting the
operations of IT staffs. And because experience
showed that the release of the update was really the
event that started the race to reverse engineer the
update and exploit the vulnerability, it was not clear

514

that customers benefited from a release-when-ready
policy. For those reasons, Microsoft led the industry in
establishing the practice of releasing security updates
on a predictable schedule, initially releasing updates
weekly on Wednesdays and, in recent years, releasing
on the second Tuesday of each month.

A second important aspect of update release is
simultaneity. We alluded to this consideration in the
"Security fixes for multiple product versions and
locales" section earlier in this chapter. To the
maximum extent possible, updates for all affected
software versions and all language versions should be
released at the same time. Furthermore, no customer
should receive an update before any other. We’ve
often discussed the latter policy with Chief
Information Security Officers of major customers,
many of whom believe that their organizations have a
critical need to receive security updates or security
bulletins before other customers. They make
compelling cases, but on examination, it’s simply
impossible to develop a consistent rationale for giving
some customers access to updates before others—you
find yourself on a slippery slope at whose bottom
everyone receives the updates early. As we discussed
previously, customers who receive the updates for
testing are forbidden by the test agreement (and by
their own best interest given that the updates they are
testing are beta versions and might have unintended
negative effects on customers’ systems) from putting
them into production and are not informed of the
specific vulnerabilities addressed by the updates.

515

Microsoft carries this policy to the point of beginning
the update process for its own systems at 10:00 Pacific
Time on the second Tuesday of the month—the time
when updates become available to customers.
(However, we would almost certainly make an
exception for the case of a vulnerability in the servers
used to distribute updates and security bulletins
because the loss of those servers would prevent not
only Microsoft but also its customers from protecting
themselves.)

Emergency situations have the potential to justify
exceptions to our principles of predictability and
simultaneity. Simply put, if a vulnerability is being
exploited widely or poses a significant threat to the
safety of customers and the Internet, the need for a
speedy update can overwhelm the goals of releasing
on a predictable schedule and of protecting all
customers at once. We would be more reluctant to
abandon simultaneity than predictability because it’s
very hard to justify leaving some customers at risk
while protecting others. (Fortunately, Microsoft’s
development and packaging practices make it
relatively simple to release updates for all product
versions and languages at the same time.) One
example of a decision to abandon predictability
concerned the update released with Microsoft Security
Bulletin MS06-001, "Vulnerability in Graphics
Rendering Engine Could Allow Remote Code
Execution" (Microsoft 2006). In that case, a
vulnerability in the Windows Metafile Format (WMF)
was discovered to be under active exploitation during

516

the period between Christmas 2005 and New Year’s
Day 2006. The MSRC team and the Windows team
worked long days and nights through the New Year
holiday weekend and into the following week to
investigate the vulnerability, provide workaround
information to customers, and build and test an update.
Although the regular monthly release was planned for
Tuesday, January 10, the MSRC determined that the
severity of the vulnerability and the widespread
customer concern would justify an out-of-band release
as soon as the update had passed required testing.
When that milestone was completed, the MSRC
released the bulletin on Thursday, January 5, five days
before the scheduled monthly release.

Once the bulletin and update are released, MSRC
personnel initiate press outreach if warranted and
respond to any press inquiries about the update. They
also begin to monitor Internet activity for signs of the
release of exploit code that would allow someone to
attack customers or of worms, viruses, or other
malware that exploit one of the vulnerabilities fixed by
the update. Later in this chapter, the "Emergency
Response Process" section discusses these situations in
more detail.

517

Lessons learned

Although the urgent part of the response process
concludes with the release of the security update and
bulletin, one very important aspect remains. That is to
ensure that security engineering practices, tools,
testing, and training reflect the lessons to be learned
from the vulnerability. At Microsoft, one staff member
of the SWI team is responsible for conducting a
root-cause analysis for every vulnerability fixed by a
security update; for documenting the failures of
design, coding, testing, training, and tools that allowed
the vulnerability to make its way into the product; and
for recommending changes that would prevent similar
errors from occurring in the future. Updates to
Microsoft’s static analysis tools, PREfix and PREfast,
frequently result from the "lessons learned" process,
and our security training classes (especially those
taught by Michael Howard) are replete with samples
of vulnerable code drawn from actual security
vulnerabilities and the fixes that addressed them.

We’ve said throughout this book that absolute security
isn’t achievable and that the only practical way to
achieve more secure software for customers is to apply
best practices and to learn from your mistakes. The
"lessons learned" component of the security response
process is key to learning from mistakes. It is
absolutely vital that you not only recognize the
specific causes and design or coding errors that lead to
each security update but also use them as starting
points for your own search for new kinds of

518

vulnerabilities and ways to avoid them. In several
cases at Microsoft, SWIAT investigations led to the
identification of new classes of vulnerabilities related
to but different from those reported by outside security
researchers. The SWI team and product teams have
then taken action to eliminate newly discovered
vulnerabilities from product versions still under
development. Most of these vulnerabilities have never
been discovered by outside security researchers even
though some examples remain in older product
versions; if the vulnerabilities are discovered,
customers who are using newer product versions that
have been subject to the SDL are protected without
any need to update their systems.

519

Emergency Response Process
The security response process described in the
previous sections manages the "normal" security
vulnerability cycle that begins with an external report
of a vulnerability and culminates with the release of a
security update and an update of development
processes to reflect lessons learned. Although not
exactly routine, this cycle has a relatively predictable
flow and usually allows the product developer time to
develop and test a security update and the associated
communications.

There is an alternative vulnerability cycle that we at
Microsoft refer to as the incident response or
emergency response process. This cycle begins with
some event—the irresponsible disclosure of a
vulnerability or the launching of a worm, virus, or
other piece of malware that might pose a significant
and near-term threat to users of the affected software.
At Microsoft, if the MSRC determines that the event
in question could pose such a threat, it initiates what
we refer to as the Software Security Incident Response
Process (SSIRP).

The objective of the SSIRP is to mobilize Microsoft
resources quickly to assess the potential threat and
take action to minimize its impact on Microsoft
customers. Each SSIRP incident is managed in a
sequence of phases as shown in Figure 15-4. During
the earlier phases, the process assembles a response
team, identifies the scope and impact of the (real or

520

potential) problem, and identifies a potential course of
action toward its resolution. In the later phases, the
process provides customers with information, tools,
and updates as required to resolve the problem and
reverse its impact to the extent feasible.

Figure 15-4. SSIRP flow.

The SSIRP is managed and executed by a
cross-functional team of people drawn from MSRC,
SWIAT, the customer support organization, and the
Microsoft IT security organization. Each incident is
assigned an emergency lead (overall manager for that
incident), an engineering lead (focused on the
technical aspects of the incident), and a
communications lead (focused on customer impact
and external communications). Engineers and
managers from the product group (or groups)
responsible for any affected product join the SSIRP

521

team as required. The following sections describe the
SSIRP’s phases.

Watch phase

The Watch phase begins immediately after MSRC or
any other team recognizes an unusual event. MSRC
often initiates the Watch phase, but other teams,
including customer service and the Microsoft IT
groups, might also initiate Watch. Outside parties,
including security vendors, customers, the press, and
CERTs or government agencies, might also provide
reports that lead to the initiation of the Watch phase.
The Watch phase is executed by a small group of "first
responders" whose objective is limited to confirming
that an incident is under way. Once confirmation is
complete, the process moves to the next phase.

522

Alert and Mobilize phase

During the Alert and Mobilize phase, a full SSIRP
team is assembled, and an emergency lead,
engineering lead, and communications lead are
designated. The product team (or teams) responsible
for the affected product (or products) mobilize during
this phase. They work with SWIAT to begin
determining the technical realities underlying the
incident. The customer service and communications
teams evaluate the incident’s impact on customers and
its visibility in the press. These two factors play a
major role in evaluating the significance of an
incident, along with the technical assessment of
severity and potential impact. If an incident affects a
large number of customers or affects customers in a
major way, it is significant; if an incident attracts
media attention, it is significant because customers
will become concerned about the safety of their
systems regardless of the realities of the threat.
Technical considerations can also make an incident
significant. For example, the irresponsible disclosure
of a vulnerability that could be exploited to do
significant harm to customers almost inevitably leads
to a SSIRP mobilization because the exploit could
occur before an update is available to protect
customers. Because the release of security updates is
regularly followed by reverse engineering of the
updates, publication of exploit code, and release of
malware that exploits a vulnerability fixed by an
update, MSRC enters the Alert and Mobilize phase as

523

a matter of course as part of the process of releasing
updates on the second Tuesday of the month. This
process ensures that the response and product teams
are assembled and prepared to respond as quickly as
possible if exploit code is released or a malicious
attack is launched.

524

Assess and Stabilize phase

The objective of the Assess and Stabilize phase is to
provide sufficient information and assistance to
customers so that the threat of harm can be
significantly mitigated. This objective implies that
SWIAT and the product team must gain sufficient
understanding of the incident to make a
recommendation—either that customers apply an
existing update or that they deploy some measure that
mitigates the effects of a vulnerability or the potential
for a successful attack. For many incidents, this sort of
recommendation might be sufficient to keep the attack
from causing significant harm if the attack is not
damaging or widespread and if MSRC can alert
customers to apply an existing update. Similarly, if an
attack is not exploiting a vulnerability at all, a
recommendation for user action might be sufficient.

If an incident does involve the exploitation of a new
vulnerability for which no update has been developed,
the identification and communication of mitigations
and workarounds becomes critically important. The
Assess and Stabilize phase aims to produce
mitigations and workarounds as rapidly as possible
and to disseminate them broadly to stop an attack or
incident before it can cause significant harm. During
both the Alert and Mobilize phase and the Assess and
Stabilize phase, MSRC and SWIAT work with
partners such as antivirus and intrusion-detection
vendors to share information and to ensure that the
partners provide updated signatures that can protect

525

customers. This work with partners is especially vital
when an attack is under way and no update is available
or when the attack is not exploiting a vulnerability.

526

Resolve phase

The Resolve phase brings the incident to a close by
releasing whatever tools, updates, or information is
required to assist customers in recovering from the
effects of an attack and protecting themselves from
further attacks. If the incident involves a vulnerability
for which no update is available, an update must be
released before the Resolve phase can be closed. If the
incident involves an attack that damages customers’
systems, customer support must have the information
necessary to help customers recover to the maximum
extent possible. Depending on the scope of the attack,
a malicious-code cleaning tool might also be released.

Cooperation with antivirus and intrusion-detection
vendors continues into the Resolve phase. Customer
and press communication also continues until
customers are aware of the workarounds, mitigations,
updates, and tools released in response to the incident.

At the conclusion of the SSIRP for a given incident,
the team conducts a postmortem to identify lessons
learned and potential improvements for the SSIRP
process. This postmortem goes beyond the normal
security response "lessons learned" process because it
covers the teams involved in customer recovery and a
broader range of communications activities, in
addition to covering a software vulnerability and the
steps needed to prevent similar vulnerabilities in the
future.

527

Security Response and the
Development Team
In the previous section, we presented an overview of
the functions and organization of a security response
center, drawing heavily on our experience with the
Microsoft Security Response Center and the way it
handles both normal vulnerability reports and security
incidents that range up to the seriousness of full-blown
Internet emergencies. That overview referred to the
role of the product team responsible for the affected
product in each of the stages of response, from triage,
through update development and testing, to release.
This section focuses on the aspects of preparation for
security response that our experience has shown to be
necessary if a product team is to execute its part of the
response process effectively. The two guiding
principles to this section are first, that the time to
prepare for security response is before a vulnerability
has been reported, and second (as we point out
repeatedly in this book), that every team that ships
software needs to be ready for security response.

Create Your Response Team
Our discussion of the security response process
addressed at length the role of the response center as
well as how the product team deals with a
vulnerability report or security incident. That
discussion assumed that the product team had people

528

in place to execute their part of the response process
and that the response center staff knew how to reach
them. The times are long past when MSRC had to
scramble to find the team responsible for a product or
component after a vulnerability had been reported.

Today, the rule is simple: when you ship a piece of
software, whether it’s a revenue product or a free
release, you must identify the people who will respond
to externally discovered vulnerabilities in that
software and must provide their contact information to
the response center. You should identify enough
people that the response center can always find
someone despite vacations and holidays. When
someone in a response role leaves the product team,
you must replace her. If the contact process breaks
down, response center staff normally start contacting
individuals higher in the management chain until they
find someone who has the authority to get the response
moving. At Microsoft, MSRC maintains emergency
contact information for every product team’s
management up to the vice president level as a backup
for the contact lists of the people who are supposed to
respond. All individuals on the contact lists provide
information so that they can be contacted 24 hours a
day and seven days a week.

The question of who plays the response-contact role is
pretty well settled at Microsoft—almost all product
teams designate program managers to drive their
response process. The response program manager is
expected to find testers to work with SWIAT to

529

produce the vulnerability report. This program
manager should also bring in the developers who are
responsible for the offending code and can diagnose
the root cause and make the fix as needed. Individual
product groups organize the specifics of this process
differently. Some have a dedicated, sustained
engineering team with developers and testers who can
build and test fixes whereas others assign sustained
engineering program managers to coordinate the
process but use developers and testers from the core
development team. In every case, the response process
can call on the developer who "owns" the code that
exhibits the vulnerability to ensure clear understanding
of the problem and the development of a correct fix.

Beyond merely creating the response team, you will
need to be able to respond to vulnerabilities as long as
the product is supported. For Microsoft products, this
period is usually 10 years. As a result, we occasionally
have to consider how we’ll support the security of a
product long after we’ve stopped new development
and reassigned most of the team originally responsible
for the code. There’s no single solution to this
problem, although the usual answer is that support
responsibility goes to the team that develops the
closest successor product. You’ll always have to be
aware of continuing security response support,
especially when you stop new development on a
product or version.

530

Support Your Entire Product
The less-formal way of stating the requirement to
support your entire product is to say, "If you ship it,
you need to understand how to update it." In large
software organizations such as Microsoft, sharing and
reuse of code and software components are common.
(We’ve referred to those components as giblets, after
the plastic bag of assorted innards that comes inside a
frozen turkey.) The practice of reusing and sharing
components has benefits for efficiency and
consistency, but it does carry with it the risk that a
vulnerability in giblet A will be manifest in product B,
whose development team didn’t create giblet A and
might not have the capability to update it.

The recommended response to this problem is simply,
"Don’t do that." If at all possible, rely on platform
services that can be updated once as part of the
operating system to protect users of all applications
when a vulnerability is discovered. If you ship a
component that was developed by another team, you
must have a service-level agreement with the
developing team so that they will respond when
vulnerabilities are found and will work with you to
develop, test, and package the necessary updates. If
you can’t get such an agreement, take ownership of
the source code and be prepared to respond on your
own. If you can’t get ownership of the source code,
develop your own component so you can support it
correctly.

531

In the case of a widely shared component such as an
image parser, class, component, or library, it’s
especially important that the team that develops the
component provide a plan for security response.
Occasionally, after a vulnerability is reported to a team
that shipped a component, the response center and the
"shipping" team discover that the report actually
affects a reused component. At that point, ideally, the
response center brings in the team that developed the
vulnerable component, and that team diagnoses the
problem, develops a fix, and ensures that the fix is
released by all of the "shipping" teams that have used
the vulnerable component. Getting to this ideal state
requires that the team that develops the component
know which teams ship it and that there be a way to
update the component wherever it’s used. Meeting the
first requirement means that the developing team
needs to have an authoritative list of "shipping" teams.
Meeting the second requirement means that the
installation and updating tools have to be robust
enough to detect the vulnerable versions and apply the
fix where needed. None of this is rocket science, but it
can get very complicated in the case of a widely used
component in which different "shipping" products
might install different component versions and in
which some of the teams involved fail to think about
the need to update. At Microsoft, we’re still working
to improve our processes in this area.

532

Support All Your Customers
It’s probably obvious that you’ll need to respond to
vulnerabilities in all supported versions of your
product, but we want to stress the point anyway. Our
discussion of the response process emphasized the
need to provide simultaneous updates for all supported
versions, service packs, and local-language versions.
Meeting this need means that your source control and
testing systems need to be organized to produce and
test the necessary updates for all supported versions
(not just the most recent). Your customers do not want
to be forced to upgrade to a new version, or even to a
new service pack, to protect themselves from
exploitation of a security vulnerability.

Support for local languages is another aspect of the
development team’s role. Ideally, the local language
support in your product will be designed well enough
to allow you to build a single fix that applies to all
language versions. However, some aspects of the fix
or update might differ, depending on the language
version. In that case, you should be prepared to do the
necessary development and testing to release the fix
for all languages at the same time. At Microsoft, our
work to improve localization support for products has
reduced the localization burden for updates so that
only a few messages from the update installer package
vary with local language. Furthermore, our processes
now ensure that the localization work is completed
rapidly enough so that updates for all supported

533

languages ship at the same time. If you support an
international market, it’s important to get the
localization and internationalization support right in
the first place because it will make security
updating—as well as product enhancements in
general—simpler for both your customers and your
development teams.

To give you an idea of the level of effort required to
support all your customers, we’ll cite the example of
the Microsoft Internet Explorer browser component.
At one time, before they could ship an update, the
Internet Explorer team had to ensure the availability
and testing of about 425 different packages, driven by
the numbers of supported versions, operating system
platforms, and local languages. Few products or
technologies are as widely used or supported as
Internet Explorer, but it’s still very important to
consider the total number of versions you’ll need to
support and to factor that number into your plans.

534

Make Your Product Updatable
Once you’ve produced an update and released it, your
customers aren’t protected until they’ve installed it.
This section is about the work that the product team
does to ensure that customers can actually install the
update. At Microsoft, we’ve found that improvements
to update deployment and installation have been one
of the most significant factors in improving our
security response processes—and our customers’
security. Even if your users are technology-savvy,
they’ll benefit from easy update deployment and
installation.

There are a wide range of techniques for installing
security updates. The least-effective technique is to
ship your customers a package of updated product
files and a readme file that tells them where on their
system to copy the files. At the other extreme, you can
build a tool into your product that detects the
availability of a new update, copies it over the Web,
and installs it for the customer with no manual
intervention (assuming, of course, that the customer
has consented to having his system updated in this
manner). At Microsoft, we’ve sought to implement the
latter approach. The reason is simple: more customers
will actually deploy the updates, and fewer customers
will be affected by malicious code and hostile attacks.

Achieving a consistent updating experience is easiest
if you pick one and use it for all your products. At

535

Microsoft, we started with eight individual installers
that had been developed or adopted by product teams
over the years. We were rightly criticized by
customers and analysts for having such a confusing set
of updating tools, so we initiated a multi-year
transition to two installers (one for operating system
components and the other for applications) to ease the
burden on customers. Even those two installers use
identical installer flags for various options, such as
silent installation, to ease the system administrator’s
task. Similarly, we are moving from a variety of ways
of getting to the updates on the Web—Windows
Update, Office Update, the Microsoft Download
Center Web site, and individual product download
Web sites—to a single Microsoft Update Web site that
supports automatic updating plus a consistent family
of enterprise updating tools for use by administrators
who must update large numbers of computers.

Our objective in making the transition to a consistent
updating approach is to reduce the difficulty of
updating for customers and, thus, to help them install
updates more rapidly. We’d like to see all home users
install updates automatically as soon as they’re
released (because they are unlikely to have complex
custom applications in which compatibility with an
update becomes an issue), and we’d like to see
businesses install updates very rapidly with little or no
delay attributable to the difficulty of packaging and
deploying updates. We still see a few software
suppliers releasing updates in a form in which the
administrator has to copy individual files into the

536

appropriate directories on the system. We believe that
such a manual and error-prone approach inevitably
delays update deployment and thus increases risk to
customers. Your organization is not likely to have as
many products or versions to contend with as
Microsoft does, but it’s still very desirable to make a
common choice of updating technology and then apply
it for all of the products you release.

The last component of making your product updatable
involves ensuring that updates are delivered securely.
We still see individuals and some organizations that
post updates to the Web without giving their users any
way of confirming either the source of the update or
the integrity (freedom from alteration) of the content.
Installing any code whose origin and integrity you
can’t confirm is risky, and that statement is even more
pertinent for a security update. You should ensure that
your updating mechanism includes provisions for
digitally signing the update content, for confirming
that the signer is in fact the organization that claims to
have authored the update, and for verifying that the
signed content has not been tampered with. All of
Microsoft’s updating mechanisms incorporate these
attributes, and in the case of the automatic updating
mechanisms (Windows Update, Office Update,
Microsoft Update), signature and integrity verification
are performed by the update client as part of the
download and installation process. Finally, have a plan
to deal with the compromise of the key that you use to
sign your updates. Although we’ve never had to deal
with this problem, in 2001 we did have to deal with a

537

situation in which a commercial certification authority
certified two fraudulently acquired code-signing
digital certificates that claimed to belong to Microsoft
(Microsoft 2001). We revoked the certificates, and to
the best of our knowledge, they were never used. The
experience reinforced our commitment to being able to
deal with such a contingency.

538

Find the Vulnerabilities Before the
Researchers Do
The final but most important response-related task for
the product team is to use vulnerability reports as a
learning experience and to fix as many vulnerabilities
as possible with as few updates as possible. To do this,
the team must develop an in-depth understanding of
each reported vulnerability and then determine
whether the vulnerability represents an instance of
some recurring pattern. If it does, the team must try to
find the other instances and correct them all. In
previous sections in this chapter, we discussed the
three Microsoft updates, beginning with MS03-026,
that addressed RPC/DCOM vulnerabilities. After the
initial vulnerability report, MSRC, SWIAT, and the
DCOM team quickly realized that the issue was just
one instance of a pattern of vulnerabilities that they
needed to address. In addressing the underlying
problem, they conducted a series of code reviews and
tests that lasted for several months. Ideally, they
would have been able to release a single update to
resolve all of the vulnerabilities at once, but receipt of
new reports and concern over customers’ safety
caused them to decide to release a series of three
updates that eliminated progressively more
vulnerabilities.

Some customers were upset over the fact that
Microsoft released a succession of three updates to
address the RPC/DCOM vulnerabilities; we would

539

have preferred to release only one. But consider the
alternatives: if we had simply fixed vulnerabilities as
they were reported, we might well have issued 20 or
more updates over a period of months or years, each
addressing "the next" vulnerability. If we had waited
until all of the vulnerabilities were eliminated before
releasing any update, the odds were high that at least
one of the vulnerabilities would have leaked out and
been exploited while customers were still defenseless.
We think we made the right choice to protect our
customers.

Learning from security vulnerabilities involves two
separate cycles. The shorter cycle is the security
response cycle: the product team takes an external
report, investigates it, and develops and releases an
update that addresses the reported vulnerability and
related vulnerabilities. The longer cycle reaches into
the product-development process. The product team
and the central security team update processes,
training, tools, and standards to attempt to ensure that
new product versions are not affected by the
vulnerability or anything like it. This longer cycle is
critically important, and it’s why we view security
response as an integral component of SDL.

540

Summary
In the real world, products do not achieve perfect
security, so software organizations must plan for
security response. The response process encompasses
a security response team or center, which faces
customers and security researchers, and the product
team, which must be prepared to investigate and
eliminate security vulnerabilities. To implement the
SDL effectively, the product team must treat each
vulnerability report as a learning experience and must
attempt to find related vulnerabilities and fix them in
security updates and to update its SDL processes
based on the lessons learned from each vulnerability.

541

References

542

Bibliography
[biblio15_01] (Karger et al. 1991) Karger,P.A.,
M.E.Zurko, D.W.Bonin, A.H.Mason, and C.E.Kahn.
"A Retrospective on the VAX VMM Security
Kernel," Transactions on Software Engineering,
17(11):1147–1165. November 1991.

[biblio15_02] (Eichlin and Rochlis 1989)
Eichlin,M.W., and J.A.Rochlis. "With microscope
and tweezers: An analysis of the Internet
virus of November 1988," Proceedings of the
IEEE Computer Society Symposium on Security and
Privacy, pp. 326–345, Oakland, CA, May 1989.

[biblio15_03] (CERT 2002) Carnegie Mellon
Software Engineering Institute, CERT Coordination
Center. "CERT Advisory CA-2002-03 Multiple
Vulnerabilities in Many Implementations of
the Simple Network Management Protocol
(SNMP)," http://www.cert.org/advisories/
CA-2002-03.html. February 2002.

[biblio15_04] (Microsoft 2004a) Microsoft Security
Bulletin MS04-007. "ASN.1 Vulnerability Could
Allow Code Execution (828028),"
http://www.microsoft.com/technet/security/Bulletin/
MS04-007.mspx. February 2004.

[biblio15_05] (Microsoft 2000a) "Information on
Cross-Site Scripting Security Vulnerability,"

543

http://www.cert.org/advisories/CA-2002-03.html
http://www.cert.org/advisories/CA-2002-03.html
http://www.microsoft.com/technet/security/Bulletin/MS04-007.mspx
http://www.microsoft.com/technet/security/Bulletin/MS04-007.mspx

http://www.microsoft.com/technet/archive/security/
news/crssite.mspx?mfr=true. February 2000.

[biblio15_06] (Microsoft 2005) Microsoft Security
Bulletin MS05-029. "Vulnerability in Outlook
Web Access for Exchange Server 5.5 Could
Allow Cross-Site Scripting Attacks (895179),"
http://www.microsoft.com/technet/security/Bulletin/
ms05-029.mspx. June 2005.

[biblio15_07] (eWeek 2005) Roberts,PaulF.
"Microsoft Scraps Old Encryption in New
Code," http://www.eweek.com/article2/
0,1895,1859751,00.asp. September 2005.

[biblio15_08] (Microsoft 2000b) "Outlook Email
Security Update Now Available,"
http://www.microsoft.com/presspass/features/2000/
jun00/06-08outlook.mspx. Microsoft PressPass, June
2000.

[biblio15_09] (Naraine 2004) Naraine,Ryan.
"Malware Hacker Attack Linked to
Spammers," http://www.internetnews.com/security/
article.php/3373581. InternetNews.Com, June 2004.

[biblio15_10] (Koetzle et al. 2004) Koetzle, Laura,
Charles Rutstein, Natalie Lambert, and Stephanie
Wenninger, Forrester Research. "Is Linux More
Secure Than Windows?"
http://www.forrester.com/Research/Document/
Excerpt/0,7211,33941,00.html. March 2004. Or
http://download.microsoft.com/download/9/c/7/

544

http://www.microsoft.com/technet/archive/security/news/crssite.mspx?mfr=true
http://www.microsoft.com/technet/archive/security/news/crssite.mspx?mfr=true
http://www.microsoft.com/technet/security/Bulletin/ms05-029.mspx
http://www.microsoft.com/technet/security/Bulletin/ms05-029.mspx
http://www.eweek.com/article2/0,1895,1859751,00.asp
http://www.eweek.com/article2/0,1895,1859751,00.asp
http://www.microsoft.com/presspass/features/2000/jun00/06-08outlook.mspx
http://www.microsoft.com/presspass/features/2000/jun00/06-08outlook.mspx
http://www.internetnews.com/security/article.php/3373581
http://www.internetnews.com/security/article.php/3373581
http://www.forrester.com/Research/Document/Excerpt/0,7211,33941,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,33941,00.html
http://download.microsoft.com/download/9/c/7/9c793b76-9eec-4081-98ef-f1d0ebfffe9d/LinuxWindowsSecurity.pdf

9c793b76-9eec-4081-98ef-f1d0ebfffe9d/
LinuxWindowsSecurity.pdf.

[biblio15_11] (SecurityFocus 2005) BugTraq,
http://www.securityfocus.com/archive/1/description.

[biblio15_12] (Cartwright 2002) Cartwright,John.
[Full-Disclosure] Mailing List Charter,
http://lists.grok.org.uk/full-disclosure-charter.html.
Created July 2002.

[biblio15_13] (Microsoft 2003a) Microsoft Security
Bulletin MS03-026. "Buffer Overrun in RPC
Interface Could Allow Code Execution
(823980)," http://www.microsoft.com/technet/
security/Bulletin/MS03-026.mspx. July 2003.

[biblio15_14] (Microsoft 2003b) Microsoft Security
Bulletin MS03-039. "Buffer Overrun in RPCSS
Service Could Allow Code Execution
(824146)," http://www.microsoft.com/technet/
security/Bulletin/MS03-039.mspx. September 2003.

[biblio15_15] (Microsoft 2004b) Microsoft Security
Bulletin MS04-012. "Cumulative Update for
Microsoft RPC/DCOM (828741),"
http://www.microsoft.com/technet/security/Bulletin/
MS04-012.mspx. April 2004.

[biblio15_16] (ZDNet 2006) Espiner,Tom.
"Microsoft to lift lid on hacker conference,"
http://news.zdnet.co.uk/0,39020330,39257971,00.htm.
March 2006.

545

http://download.microsoft.com/download/9/c/7/9c793b76-9eec-4081-98ef-f1d0ebfffe9d/LinuxWindowsSecurity.pdf
http://download.microsoft.com/download/9/c/7/9c793b76-9eec-4081-98ef-f1d0ebfffe9d/LinuxWindowsSecurity.pdf
http://www.securityfocus.com/archive/1/description
http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/Bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/Bulletin/MS03-039.mspx
http://www.microsoft.com/technet/security/Bulletin/MS03-039.mspx
http://www.microsoft.com/technet/security/Bulletin/MS04-012.mspx
http://www.microsoft.com/technet/security/Bulletin/MS04-012.mspx

[biblio15_17] (Microsoft 2006) Microsoft Security
Bulletin MS06-001. "Vulnerability in Graphics
Rendering Engine Could Allow Remote Code
Execution (912919)," http://www.microsoft.com/
technet/security/Bulletin/MS06-001.mspx. January
2006.

[biblio15_18] (Microsoft 2001) Microsoft Security
Bulletin MS01-017. "Erroneous VeriSign-Issued
Digital Certificates Pose Spoofing Hazard,"
http://www.microsoft.com/technet/security/Bulletin/
MS01-017.mspx. March 2001.

546

http://www.microsoft.com/technet/security/Bulletin/MS06-001.mspx
http://www.microsoft.com/technet/security/Bulletin/MS06-001.mspx
http://www.microsoft.com/technet/security/Bulletin/MS01-017.mspx
http://www.microsoft.com/technet/security/Bulletin/MS01-017.mspx

Chapter 16. Stage 11: Product
Release
Congratulations, your product is complete! Release of
the product as a CD or DVD or as a Web download
requires completion of the Security Development
Lifecycle (SDL) process for security and privacy as
defined in this book.

Important

It is assumed that your company has a formal
"sign off" process for releasing software to users.
Such criteria often include the requirement that no
bugs of a specific severity exist and that the
software is in compliance with various legal
requirements, such as the U.S. Rehabilitation Act
Section 508 (Microsoft 2005).

To sign off on the software, the central security and
privacy team must agree that the SDL has been
followed satisfactorily. There really should be no
surprises because the final security review (FSR) stage
of the SDL should have uncovered any lingering
issues. And, as we said in Chapter 14, there should be
few if any surprises during the FSR process if the team

547

has performed the appropriate SDL due diligence
throughout the software’s development.

Finally, to better facilitate debugging security
vulnerabilities reported to you, we strongly advise you
to upload debugging symbols to a central, internal site
that can be easily accessed by your engineers.
Debuggers use symbols to turn addresses and numbers
into human-readable function names and variable
names. This debug symbol requirement applies to all
publicly released binaries.

Now the hard work begins: maintaining software and
handling security bugs. That’s next.

References

548

Chapter 17. Stage 12: Security
Response Execution
In this chapter:

Following Your Plan

Making It Up as You Go

Knowing What to Skip

This chapter summarizes the real-world challenges
associated with responding to security vulnerabilities.
It amplifies and complements the guidance provided in
Chapter 15. This chapter also outlines what a software
organization should do if it has not heeded the
guidance in Chapter 15.

Following Your Plan
If you’ve faithfully followed the advice in Chapter 15,
the reporting of a new security vulnerability is almost
a non-event. Of course, hearing about a vulnerability
in a product that you’ve worked hard to make secure is
never pleasant, and you must use the lessons learned
to avoid repeating the mistake. But if you have a
response plan, your task is to do what you said you’d
do in the plan rather than solve the problem from

549

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch17s02.html

scratch. The following sections provide additional
guidance for the execution phase of your security
response process.

Stay Cool
Your team has probably worked hard on the security
of the product that’s the subject of the vulnerability
report, and you think you’ve done a pretty good job.
So one natural reaction to a vulnerability report is to
blame the messenger. Our advice is simple: don’t do
that.

The security researcher who reported the vulnerability
might have reported it to you responsibly (privately),
or he might have reported it to a public mailing list.
He might be very cooperative with your security
response team (or the individual you’ve designated to
handle security response cases if your organization is
small and vulnerability reports are infrequent) or be
rude and abusive as he berates you for the stupidity
that led to the vulnerability in your product. In any
case, your objective is to do the best you can to protect
the security of your customers, and that objective
should guide your actions in dealing with the
researcher.

Important

550

Never lose sight of the most important goal of the
security response process: protecting your
customers.

No matter how hard it is, your response team should
be polite and cooperative and should treat the
researcher with respect. If he made a private report,
you should be appreciative and try to encourage that
behavior in the future. If the vulnerability was
disclosed irresponsibly, for example to a mailing list,
you should still try to establish communications with
the researcher. You should assume that anyone who is
capable of discovering one vulnerability in your
software is capable of discovering more, so your
objective should be to build a relationship so as to get
or keep the researcher on the path of cooperation and
responsible disclosure.

Building cooperative relations with researchers can
pay unexpected dividends: researchers communicate
with each other, and a good relationship with one
might lead others to treat you as a member of the
community and cooperate with you as well. (A bad
relationship with one researcher might lead others to
treat your organization as untrustworthy and to report
vulnerabilities in your products irresponsibly as a
matter of course.) Building a good reputation is not
easy: Many researchers believe that they are doing the
vendor’s security quality assurance (for free), and
some have been prejudiced against all vendors by the
slow or poor-quality response of vendors who would

551

rather blame the messenger than fix problems in their
products. The approach of cooperating with
researchers maximizes the chances that your
development and test teams will be able to find and fix
all of the related vulnerabilities in your product and
release only high-quality updates.

Losing your temper at a researcher might be tempting,
but it leads to the likelihood of irresponsibly disclosed
vulnerabilities, bad press, and risk for your customers.
You certainly don’t want that—especially not risk for
your customers.

552

Take Your Time
If you’re really serious about security and you have
not experienced a response case before, you might
naturally be tempted to work superfast to get the
vulnerability fixed and the update out. This is another
"don’t." The response process encompasses numerous
steps—you know that because you’ve put together a
plan—and they are all included for a reason. If you
shortcut any step, especially building a quality fix,
searching for related vulnerabilities, or testing the fix,
you are likely to regret doing so. Here are some
specific reasons why being thorough can be more
important than being fast:

▪ If you fail to take the time to build a quality fix,
you’ll likely release an update that introduces a
compatibility problem or you’ll overlook the root
cause of the vulnerability that was reported.
Doing so is a sure way to necessitate a re-release
of your update. And if there’s one thing your
customers dislike more than applying a security
update, it’s having to apply additional updates to
fix the same problem.

▪ Failing to take the time to search for related
vulnerabilities exposes you to the risk that the
researcher who reported the first vulnerability, or
one of his peers, will be back the week after you
release your update with a new report that looks
almost like the last one. Your customers are

553

likely to wonder why your product has so many
similar problems. Releasing an update for a
vulnerability very similar to one you just fixed is
not quite as bad as releasing an update that fails
to fix the first vulnerability, but it’s not a good
thing either.

▪ Failing to test the update exposes your customer
to the risk that your update will break their
systems or applications. This is probably the case
that your customers would dislike most.

Your response plan must identify a process for
releasing high-quality updates that fix the
vulnerabilities they are supposed to fix. It’s important
to take the time to stick to the plan as long as
circumstances allow you to do so.

554

Watch for Events That Might
Change Your Plans
The recommendation to watch for events that might
change your plans is the flip side of the suggestion to
take your time. If someone begins to exploit a
vulnerability in your software, you must mobilize your
emergency response process and go as fast as possible
to protect your customers. If you don’t notice that the
vulnerability is being exploited, you might continue
with your routine process while your customers’
systems are being "0wned." You need to know the
severity and impact of a vulnerability and the severity,
spread, and impact of any exploitation or attack.

Becoming aware that a vulnerability is being exploited
is neither an easy nor a routine task, and no
prescription guarantees that you’ll notice exploitation.
Error reports or intrusion-detection logs from
customers might provide a clue, as might a surge in
visible Web site defacements. And of course, an
inquiry from a law-enforcement agency is a good clue
that something is amiss.

It’s a good idea to be proactive about detecting
exploitation of product vulnerabilities. Watching the
security mailing lists such as Bugtraq, Full-Disclosure,
and NTBugtraq and paying attention to customer
problem reports are good ideas, but there are other
things you can do. If you have an e-mail alias such as
secure@microsoft.com for reporting security

555

vulnerabilities, your response team might receive
reports of exploitation at that alias. Security
researchers might hear about attacks that you miss and
be willing to share information with you. (See the
section titled "Stay Cool" earlier in this chapter; this is
another good reason to maintain good relations with
the researcher community.) You can also join a
security response organization whose members share
information about the security of the Internet and
about evolving problems. The Forum of Incident
Response and Security Teams is an international
organization whose members cooperate to improve the
safety and security of the Internet (FIRST 2006). The
Information Technology Information Sharing and
Analysis Center is another such organization
(IT-ISAC 2006).

556

Follow Your Plan
If you have expended the time and effort to build a
security response plan, you’re well positioned to deal
with any vulnerability report that might reach your
product team. Of course, there are always surprises, so
your team might still have to scramble occasionally,
but you should always pay attention to your plan; after
all, that’s why you made it.

557

Making It Up as You Go
Your software organization should have a security
response plan. If you don’t have one, we recommend
that you refer to Chapter 15 and begin now to build
your plan. But just suppose that a bad vulnerability
report reaches your organization tomorrow
morning—before you can get your plan fully in place
and your people trained on the process. What should
you do? The following sections identify a couple of
important suggestions that might help you get by in
the absence of a full response plan.

Know Who to Call
Your organization probably can’t get very far toward
building and releasing a security update without
people to build and test a fix. So the first thing you’ll
need is a list of the people to contact to get your
response process moving. For security emergencies,
Microsoft’s Software Security Incident Response
Process (SSIRP) maintains 24-hour contact
information for multiple people in each role in each
product team. To release a "routine" security update,
you’ll need to be able to reach people during normal
working hours. If you’re faced with a security
response situation and you have no plan, it’s a good
idea to list all the roles needed to build, test, package,
and release a security update. Then notify people in

558

those roles about what’s going on and what they’ll
need to do.

559

Be Able to Build an Update
You need not only people to release a security update,
you also need something to update. By definition, a
vulnerability in a fielded product will affect code that
you’ve already shipped, possibly code that you
shipped years ago. Your development team is
probably working on a new version of your product,
but you need to build, test, and package an update for
the version on your customers’ computers. That means
you need the source code, build tools, and test suite for
the old version, and you need people who know how
to build an update or the documentation to tell them
how.

If you need to build an update for a version that’s
several years old, you might have to search your
libraries to find the right source code, but it’s very
important that you do so. Customers—especially
enterprise customers—dislike being forced to upgrade
versions on short notice to install a security update. If
you can’t find the source code, you will either have to
figure out another way to update the old
version—perhaps by working back from the current
version—or have to face your customers with the
(unacceptable) choice of upgrading to a newer version
in which you have been able to eliminate the
vulnerability.

560

Be Able to Install an Update
As we discussed in Chapter 15, there might have been
a time when it was acceptable to release an update in
the form of a compressed package of files and a
readme file that tells the user where to copy the files.
It’s not clear that that time ever existed for consumer
software, but it might have existed for business and
system software. In any case, that time is now gone,
and, if at all possible, you’ll need to release your
update with an installer that can place the new files on
the system and do whatever initialization is required to
provide customers with a working fix that eliminates
the vulnerability.

If your response team is scrambling to release an
emergency update and has no way to release an
installer, you can consider doing without, but you
should be prepared for customer dissatisfaction and a
lower rate of installation of the update than you might
otherwise achieve. Aggressive communication about
the update, the need to install it, and the specifics of
deploying it without an installer can help to
compensate for the absence of an installer, but this
option is clearly second choice.

561

Know the Priorities When Inventing
Your Process
The time to start thinking about a response process is
not after a critical vulnerability has been reported to
your team. But if you must invent your response
process "in real time," the guidance in the previous
sections should help you decide what to do first:
people, product code, and installer technology are the
things you can’t do without when you respond to a
vulnerability report.

As we’ve said numerous times, it’s much better if you
don’t have to build a response process in real time;
that’s why we recommend that you read Chapter 15
and develop a security response plan before you need
one.

562

Knowing What to Skip
Both this chapter and Chapter 15 emphasize the need
to develop a security response plan and execute it. But
it’s also important to remember that there can be times
when responding fast is more important than executing
all of the steps of the plan.

We talked about urgent response when we discussed
the Microsoft Windows Metafile Format (WMF)
vulnerability in Chapter 15. In that case, the Microsoft
Security Response Center (MSRC) released a
complete and tested update in advance of the normal
"second Tuesday of the month" release cycle, released
security advisories to keep customers informed, and
provided workaround information until the update was
ready. But in a very serious emergency, the following
options—which are more complete than an advisory or
workaround but short of releasing a comprehensive
update—might merit consideration:

▪ If a vulnerability is being exploited, or if you
believe that it’s likely to be exploited before you
can do a full search for related vulnerabilities,
you might decide to release an initial update that
addresses only the most obvious or critical
vulnerabilities and then follow it with a more
complete update. You might have to consider this
option fairly frequently in the course of executing
your response process.

563

▪ If a vulnerability is being exploited and causing
significant harm to customers or the Internet
infrastructure, you might be forced to skip much
of the update-quality process to protect as many
customers as possible as soon as possible. This
case might require you to consider releasing an
update that has not been fully tested or releasing
updates for different versions or languages at
different times. This sort of step is definitely not
to be taken lightly, but it might be justified by an
extremely serious attack of the scope of the Code
Red or Nimda worm. Of course, the better
prepared your product team is to build, test, and
package an update quickly, the less likely you are
to be faced with such a choice.

A decision to release an incomplete or partially tested
update is a major break from the normal response
process and can be a major mistake, depending on
circumstances. The recommendation to "watch for
events that might change your plans" applies
especially in this case. The press and some security
experts often overstate the severity, impact, and level
of exploitation of vulnerabilities and attacks, and
we’ve frequently seen them get it very wrong.
Independently watching customer support calls,
Internet mailing lists, the press, and the observations
of other response teams can help you be aware of what
is really going on and avoid making a mistake that will
be expensive for your customers’ operations and your
reputation.

564

Summary
The most important aspect of security response
execution is to have a response plan in place and to
follow it. Having a plan will help you to avoid
missteps and to make the right decisions without fear
of overlooking something and without wasting time
deciding what to do next. If you don’t have a plan or
comprehensive documentation, the minimum
resources you’ll need are the people who will build,
test, and package an update and the source code for the
software you’re going to update.

Whether you’re executing a response plan or trying to
do without, having an independent (and accurate)
picture of the severity, spread, and impact of the
vulnerability or attack you’re dealing with is vital to
making the right decisions. To get this sort of picture,
you need to have independent sources of information.
These sources range from customer reports to the
press and Internet newsgroups to information shared
by researchers and the findings and observations of
other response teams. Information is vital to making
the right decisions, executing your response
successfully, and protecting your customers.

565

References

566

Bibliography
[biblio17_01] (FIRST 2006) Forum of Incident
Response and Security Teams. http://www.first.org/.

[biblio17_02] (IT-ISAC 2006) Information
Technology: Information Sharing and Analysis
Center. https://www.it-isac.org/.

567

http://www.first.org/

Part III. SDL Reference Material

568

Chapter 18. Integrating SDL
with Agile Methods
In this chapter:

Using SDL Practices with Agile Methods

Augmenting Agile Methods with SDL Practices

Like them or not, Agile methods and processes such as
Extreme Programming (XP) and Agile processes such
as Scrum are gaining popularity (Extreme
Programming 2006, Schwaber 2004). Microsoft has
also adapted its Microsoft Solutions Framework to
include Agile methods (Microsoft 2006).

We’re not going to debate the merits of these
rapid-development processes, but groups within
Microsoft, such as those in MSN and Windows Live,
have integrated Agile methods into their development
processes to good benefit. What sets the MSN and
Windows Live projects apart from most Microsoft
projects is that MSN projects are not huge
development efforts such as Microsoft Windows or
Microsoft Office. Complex to a degree, they have an
important goal: rapidly developed small releases.
Examples of projects delivered by MSN using Agile
methods include

▪ MSN Messenger 7.5

569

▪ MSN Tabbed Browsing for Microsoft Internet
Explorer

▪ MSN Anti-Phishing add-in

▪ MSN Support tools

▪ Internet Access RADIUS Service

Note that some of these products were built using only
Agile methods and others experimented with various
ideas from Agile methods.

The rest of this chapter is split in two parts, the first
looking at Security Development Lifecycle (SDL)
concepts and applying them to Agile methods, and the
second looking at Agile methods with regard to adding
SDL concepts. Please note that the goal of this chapter
is not to cover every aspect of all Agile methods.
Rather, it is to choose where it makes sense to
augment the rules and practices of Agile methods with
more security discipline and best practices.

Using SDL Practices with Agile
Methods
In this first section, we’ll look at the core SDL
practices and consider how these can be used with
Agile methods.

570

Security Education
Regardless of what software development method you
employ, security education is critical. No development
method will create secure software if the people
building the software do not use simple security best
practices. We’ve heard people claim that <insert
popular development method> produces bug-free
software. This might be true—and of course, it is true
if you know nothing about security bugs, because you
wouldn’t recognize a security bug if you had no idea
what one was.

Hence, you should follow the standard SDL policy and
train all engineers about security issues at least once a
year. In the overall cost of software development, the
cost of education (in terms of time and effort) is tiny,
and the risk of security errors being introduced is
large.

Tip

We appreciate that everyone developing software
is in a hurry these days, but please do not skimp
on security and privacy education.

Because of the less structured environment fostered by
Agile development, the MSN teams push for more
time spent on education and training. As a result, one

571

of the MSN group’s new requirements is that at least
one hour be spent every two weeks on training and
education. Of course, security is not the only possible
subject that could be covered, but it is an important
component.

Important

We would argue that security education is more
critical in the Agile environment because more
decision-making power is placed in the hands of
the product owner and development team.

One could justifiably argue that the XP concept of pair
programming would aid with security education. But
if neither member of a pair understands security,
chances are that neither will notice a security bug. It is
our opinion that all engineers should have
classroom-style or online security education. It really
is that important.

572

Project Inception
Contrary to popular belief, Agile methods do require
some up-front groundwork. From an SDL perspective,
the team must understand who the security go-to
person is. This person is the security coach.

Note

The SDL concept of "security advisor" translates
nicely to an Agile "security coach."

Another part of XP is the notion of moving people
around. If you adhere to this principle, consider
moving the security coach around so you will force
more people to take a security leadership position.
However, do not take unnecessary risks in choosing
the security person: this person has to make the
best-possible security decisions for the product.

573

Establishing and Following Design
Best Practices
Design, according to the traditional
software-engineering definition, does not exist in most
Agile methods. Rather, as the application develops or
is iterated, the design is also iterated. Of course, you
could always make serious design mistakes early in
the product’s life, but the goal of Agile development is
to understand these mistakes early, in conjunction with
customers, and make incremental changes for the next
iteration. Often an iteration, or sprint (in Scrum
parlance), might be only 14 or 30 days long.

Another aspect of many Agile methods, including
Extreme Programming, is simple design. The software
should include only the code that is necessary to
achieve the desired results, as communicated by the
customer. Simple design has a valuable security side
effect: if you keep the design simple, you increase the
chance that the design is secure. Complex software is
difficult, if not impossible, to make totally secure.
Also, smaller and more modular software is likely to
be architecturally more secure.

The core of the Agile design philosophy is the user
story. A user story is a short text that describes how
the system is supposed to solve a problem or support a
business process. User stories should encompass the
customer’s security concerns. Developers sign up for
stories, and it’s not unreasonable to expect one or

574

more stories to focus solely on the security of the
system. But a story about security should focus on
threats perceived by the customer, which we will
discuss next.

Best Practices

For some development projects, procuring an
on-site customer might be impossible. Very large
projects, such as development of an operating
system or a Web server, are examples. In cases
like these, consider using personas, which you
create based on real customer data, to help
prioritize features and maintain focus on target
customers (Kothari 2004). Above all, personas
must be believable! You can also dedicate an
employee to play the role of each of the assigned
personas in person during meetings.

575

Risk Analysis
When building an application using Agile methods,
you will probably not have a data flow diagram
(DFD). In some software projects, there is a design
sprint, and a deliverable from the design sprint could
be a DFD.

But at some point, you will know that component A
will communicate with component B using, say,
sockets, and that component B uses a database to
persist the data over, say, Open Database Connectivity
(ODBC). Figure 18-1 shows an example of this
arrangement.

Figure 18-1. A portion of a story showing interaction
among various components.

With this small diagram in hand, you can easily apply
the risk analysis process using the following mapping:

▪ Code portions of the diagram are processes.

▪ Users are external entities.

▪ Any place where data is persisted is a data store.

576

▪ Interaction between code or data stores is a data
flow.

▪ Interaction between users or external entities and
code is a data flow.

Now you can apply the STRIDE threat taxonomy
versus DFD elements described in Chapter 9, and ask
the customer questions such as the following:

▪ Does it concern you that an authenticated user or
attacker can read any data from the Sales Order
database?

▪ Will you be concerned if a valid user is denied
access or degraded in her use of the application
server?

▪ Does it concern you that anonymous users can
read and change the network traffic between the
application server and the database server?

If the answer to any of these questions is yes, that
answer becomes part of the story. If not, make a note
in the story that the customer is not concerned.

Best Practices

Translation from threats in the threat model to
questions to ask the customer is the job of the
security coach.

577

Take a closer look at the question sentences:

▪ "Anonymous," "authenticated user," and "valid
user" are examples of roles or trust levels.

▪ "Read" is a synonym for information disclosure (I
in STRIDE). "Change" means tampering (T in
STRIDE). Denied or degraded service is an
example of denial of service (D in STRIDE).

▪ "Sales Order database" and "application server"
are example processes you need to defend from
attack. Always remember that a customer’s
machine is an asset that always requires
protection.

You can apply this simple analysis method to all parts
of the Object Management Group’s UML (Unified
Modeling Language) diagram. In short, rather than
thinking of potential security issues in an ad hoc
manner, this method combines the analytical
threat-modeling technique with rapid Agile
development methods.

578

Creating Security Documents,
Tools, and Best Practices for
Customers
Agile methods are often criticized for having very
little user-oriented documentation. At the very least,
you should provide important security best practices in
online Help files and within the application’s user
interface. Better still, if you are using the risk analysis
process described in Chapter 9, you can use the
security notes to help derive customer-facing
documentation. That being said, it all depends on
whether this is what the customer wants. So ask your
customers what they want. Chances are that if you
have a substantial user base (such as that of MSN
Messenger 7.x), you should simply do the right thing
by providing security best-practice documentation
because no customer actively wants users to make
security mistakes.

579

Secure Coding and Testing Policies
Agile methods support the notions of coding practices
and requiring constant testing. In the case of coding
practices, you should adopt secure coding best
practices defined by SDL, such as the following:

▪ Requiring coding best practices.

▪ Not using banned application programming
interfaces (APIs). (See Chapter 19.)

▪ Using only appropriate cryptographic algorithms.
(See Chapter 20.)

▪ Using static analysis tools such as those included
with Microsoft Visual Studio 2005. (See
Chapter 21.)

Better yet, don’t just define and use the coding rules; if
you use Microsoft Visual Studio 2005 Team System,
set up check-in policies and testing policies that
enforce your rules (Microsoft 2005a, Microsoft
2005b).

Testing is a little more involved. Extreme
Programming mandates that if you find a bug, you
should write a test; this mandate applies to security
bugs also. For example, if you find an integer
overflow such as the following in your C/C++ code,
you must build a security test that triggers this bug.
void *
RenderEngine::AllocArbitraryBlob(int qty,

580

int size) {
if (qty && size)

return GlobalAlloc(0,qty * size);
else

return NULL;
}

You must fix the code and rerun the test. The test
should not fail. Rerun the test on every new build of
your code. In CppUnit-like pseudocode (Wikipedia
2006, CppUnit 2006), your test might look like the
following code example:
// Instantiate the class under test.
RenderEngine *e = new RenderEngine();
// Zero quantity or size is a no-op.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0,10)
== NULL);
CPPUNIT_ASSERT(e->AllocArbitraryBlob(10,0)
== NULL);
// An overflow should fail with NULL.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0x1fffffff,0x10)
== NULL);
// A signed versus unsigned overflow
should fail with NULL.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0x1fffffff,-1)
== NULL);
CPPUNIT_ASSERT(e->AllocArbitraryBlob(-1,0x1fffffff)
== NULL);
// This should succeed; NULL means there
was an int overflow.
CPPUNIT_ASSERT(e->AllocArbitraryBlob(0x1fffff,1)
!= NULL);
// This should succeed too.
// And we need to verify that the return
buffer size is correct.
void *ptr =

581

e->AllocArbitraryBlob(0x200,0x20);
CPPUNIT_ASSERT(0x200*0x20 <=
GlobalSize(ptr));
GlobalFree(ptr);

Then you would make the code fix:
inline void *
RenderEngine::AllocArbitraryBlob(size_t
qty, size_t size) {

size_t alloc = qty * size;
if (alloc ==0)

return NULL;
// Function is inlined, so 'size' is

typically a constant // and the
division is optimized away at compile-time

if (MAX_INT / size <= qty)
return GlobalAlloc(GPTR,alloc);

else
return NULL;

}

When you rerun the tests, they should all succeed with
the defensive code in place. You should build tests
like this for all bugs, including security bugs.

Finally, fuzz testing lends itself well to Agile methods.
If you have code that parses any input, you should
build fuzz tests for all the entry points. These should
be run daily, just like every other test.

582

Security Push
Within most Agile methods, there is no concept of
specialized coding events such as those focusing on
usability or security. However, a critical tenet of
Extreme Programming is refactoring, which concerns
itself with improving the internal representation of the
code to make it cleaner, easier to read and maintain,
higher quality, and, in our opinion, more secure
(Fowler 2005). Secure software is by definition quality
software, after all. One could argue there is no need
for security pushes when Agile methods are used,
except in one particular case: the security push, as
defined in the SDL, focuses almost exclusively on
legacy code. Code that has not been touched in three
or more years probably has security bugs because

▪ The security landscape evolves substantially for
good and for ill, but mostly for ill.

▪ Security tools advance quickly for good and for
ill.

▪ People generally get better at finding security
bugs, for good and for ill.

If the legacy code handles sensitive or personally
identifiable data or is exposed to the Internet, all the
legacy code should be reviewed in a series of
"refactoring spikes" until all the code is reanalyzed,
new tests are built, and bugs are fixed. More

583

information about refactoring is provided later in this
chapter.

If you use Scrum, you should also consider adding
legacy code cleanup work to the product backlog
every couple of sprints. The product backlog is a list
of all the desired changes to the product being
developed. Work items are taken from the product
backlog and added to the sprint backlog by the product
owner. If this is the first time your product has been
subjected to security rigor, you should make the
previous code cleanup work a major component of the
backlog.

The MSN team has a mini-security push prior to a
Release Candidate in which there is a group security
code review and a dedicated test cycle for security
testing. This amounts to one day for a two-week sprint
or two days for a month-long sprint.

Tip

Some proponents of Agile methods at Microsoft
indicate that having a series of one-day "security
days" in the middle of the development schedule
is beneficial.

584

Final Security Review
The Final Security Review (FSR), as discussed in
Chapter 14, is the point at which you verify the
product is ready to ship from a security and privacy
standpoint. Agile methods cannot employ a
full-fledged FSR because of time constraints, but it
does not mean you cannot do an FSR! For code
developed using Agile methods, we propose the
following minimum set of FSR requirements:

▪ All developers working on this iteration have
attended security training within the last year.

▪ Unfixed security-related bugs are in fact
appropriate to leave in this release. If the
customer is well defined, the customer should
have the final say.

▪ All customer security stories have been
implemented correctly and signed off by the
customer.

▪ All secure-coding best practices have been
adhered to.

▪ All code-scanning tools have been used, and
appropriate bugs have been fixed.

▪ All security-related tests have been run and bugs
fixed.

▪ All parsed data formats have fuzz tests.

585

▪ If you are using managed code, such as C# or
Microsoft Visual Basic .NET, results from tools
like FxCop are evaluated and, if need be, fixed.

▪ Compilers used meet the minimum SDL
requirements. (See Chapter 21.)

▪ If you are using Visual Studio, all C/C++ code is
compiled with /GS and linked with /SafeSEH.

It’s important that all security-related user stories be
evaluated to make sure they are implemented correctly
and meet the customer’s needs.

All of the items in this list should be on a Big Visible
Chart (BVC), also called an Information Radiator
(Jeffries 2004). An important part of Extreme
Programming is communication, and BVCs are a good
way to very openly communicate what is expected of
the engineering team.

Finally, because of the highly iterative nature of Agile
methods, you can break an FSR into small "feature
FSRs." In other words, rather than putting the entire
software product through the FSR process every time
you iterate, perform smaller FSRs on one or two
features every sprint until the entire product is
reviewed. The review order is determined by risk, and
the riskiest features are reviewed first.

586

Product Release
An important part of the scheduling process when you
use Extreme Programming is the release plan. This
plan should include which security-related stories
must be delivered to customers before you can
consider the current iteration complete. When all these
stories are complete, the product is ready for release to
the customer.

587

Security Response Execution
The Security Response Execution stage is unique to
SDL and is not apparent in Agile methods. Agile
methods support the concept of rapid iterations that
have well-defined and customer-supported features
and the notion that any bugs found in one iteration can
be fixed in the next iteration. But here is the problem:
security bugs are not typical bugs. They might very
well lead to emergencies that can put the customer at
risk, which means you need to have a plan in place to
handle potential security bugs at once. The preferred
way to treat this situation is as a spike. You use a spike
solution when you are working in a new problem
domain or with a new technology you do not
understand. We would argue that newly discovered
security bugs fit both of these conditions. They are
new problems in that the instance of this bug is new to
you and your customer, and it’s something you might
not yet understand how to fix correctly. Another
reason to use a spike is time; remember, if a security
bug is publicly known, the chance that the
vulnerability could be used to attack your customer
increases over time until the customer applies the fix,
mitigation, or workaround. Therefore, we recommend
that the spike have two major components:

1. A viable workaround as soon as possible.

2. A real code-level or architecture-level remedy.

588

As a first step, determining an appropriate workaround
might include tasks like these:

▪ Enabling a firewall rule

▪ Turning off some functionality

▪ Employing another security feature

When creating the real remedy, which might be a
design or code change, it’s important that you create a
test to detect the defect first. Then make the fix and
rerun the test to verify that the fix works.

Here is where Extreme Programming and SDL might
be perceived to diverge. A spike is supposed to be a
very discrete event focusing on solving one technical
problem, but in the case of a security defect, the
chances are good that the same type of bug exists in
more than one place in the code. Because of the way
security researchers find security bugs, they will find
the other bugs—guaranteed! So when you find a
security bug, you should form a spike that includes a
security expert, make the appropriate and correct code
fix (and the test), and then find the other defect
variants within the same code area. Don’t forget to
create small tests of all the bugs. Once the fix is
complete and deemed acceptable, you must issue a fix
and provide guidance to your customers.

Core values of Agile methods include learning from
mistakes and being adaptive rather than predictive.
These notions apply to security bugs, too; you must

589

apply a root-cause analysis to answer the following
questions:

▪ Why did this mistake occur?

▪ What do we need to change to make sure this
mistake never happens again? The answers to this
might include better testing, more education, and
changes to and enforcement of the best practices.

▪ Can a tool be created to search for the mistake in
future code?

▪ Where else could this mistake have occurred?

You should apply your new knowledge to all future
iterations to reduce the chance that the same mistake is
made again (and again!).

590

Augmenting Agile Methods
with SDL Practices
In this short section, we’ll look at some of the Agile
doctrines and see how they can be augmented with
security best practices from SDL. The following list
identifies the Agile doctrines that we’ll look at:

▪ Planning

1. User Stories

2. Release planning

3. Small Releases and Iterations

4. Moving People Around

▪ Design

1. Simplicity

2. Spike Solutions

3. Refactoring

▪ Coding

1. Constant Customer Availability

2. Coding to Standards

3. Coding the Unit Test First

4. Pair Programming

5. Integrating Often

591

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#moving_people_around
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#simplicity
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#spike_solutions
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#constant_customer_availability
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#pair_programming

6. Leaving Optimization Until Last

▪ Testing all bugs

Let’s look at the specific doctrines in detail.

User Stories
User stories should include the customer’s security
requirements. As previously noted, such stories must
be based not on intuition but on real-world threats.
Use the risk- and threat-modeling method outlined in
the "Risk Analysis" section in this chapter to
understand these threats and articulate them to
customers.

In his book User Stories Applied: For Agile Software
Development, Mike Cohn suggests adding
"Constraints" to user stories (Cohn 2004). A constraint
is something that must be obeyed and is fundamental
to the business. For example, from a security
perspective, a story might include directives such as
these:

▪ "The software must not divulge the data in the
Orders database to unauthorized users."

▪ "All software add-ins must have valid digital
signatures in order to run within the system."

▪ "The client must always authenticate the validity
of the server."

For a software product to be complete, all user stories
should be complete. By "complete" we mean

592

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch18s02.html#leaving_optimization_until_last

▪ All code and test code for each story is checked
in.

▪ All unit tests for each story are written and
passed.

▪ All applicable functional tests for each story are
identified, written, and passed.

▪ Product owner has signed off.

And, from an engineering practices perspective,
"complete" means the following steps have been
taken:

▪ All appropriate security best practice has been
adhered to, or exceptions granted.

▪ The latest compiler versions are used.

▪ All code scanning tools have been run over all
code.

▪ All bugs from the code scanning tools are fixed
or postponed.

▪ There is no use of banned functionality.

593

Small Releases and Iterations
It is easier to secure a small code delta than a large
code delta. It is common to see coding bugs of all
types on the boundary of old and new code; if this
boundary is kept small, bugs can be found relatively
easily. The doctrine of small releases is good for
security, too. Another benefit of small iterations is that
you can prioritize security defenses. Critical defenses
can be added to the code in the current iteration, and
less-important defenses can be added to later iterations
if needed. Small iterations also address the notion of
not adding functionality earlier than it’s needed.

We have learned the hard way that one drawback of
introducing a new security defense is that the chance
of also introducing functional regressions is very high.
Be forewarned.

594

Moving People Around
In general, competent security specialists are scarce
and hard to hire. Be prepared to wait to hire the right
person. Once you have hired an effective security
person, encourage him to teach security to others in
the team. A critical component of security skills is
education: have the guru teach and mentor others in
the team.

Note that although moving people around is a good
idea, the authors have yet to see any team do it.

Best Practices

Security should be a skill common to all software
developers, not confined solely to just a select
group of specialists.

595

Simplicity
A simple application is more secure than a complex
application, period. Complexity is an enemy of
security. Of course, in the real world, this truism is a
little more subtle. We can always write simple
software that would never get the job done. In fact,
most code today is complex because business
processes are complex and have thorny, but necessary,
requirements that add complexity to the code, such as
responsiveness, timeliness, robustness, transaction
processing, offline and online capabilities, integration
with older systems, and so on. But at the micro-level,
your code can be simple and easy to understand and,
hence, to maintain. Where possible, strive for simple
designs and easy-to-understand code.

596

Spike Solutions
Invariably, you’ll hit security roadblocks, perhaps
security bugs or your own uncertainty on the best way
to implement or take advantage of a security feature.
A spike solution is a great method to determine the
best way to resolve security dilemmas. Take two
developers off the core project to work on the security
solution.

597

Refactoring
At Microsoft, we often systematically review older
code, looking for security bugs; if issues are found, the
code is fixed. In some cases, design issues or
erroneous coding patterns are found, and these
patterns are fixed. This concept is very similar to that
of refactoring, which is a technique for restructuring
or changing an existing body of code without
changing its interface or external behavior. You must
consider security bugs as part of your refactoring
process. Examples of security refactoring include

▪ Replacing banned APIs with safer APIs; for
example, replacing strcpy with StringCchCopy or
strcpy_s. (See Chapter 19.)

▪ Replacing weak crypto algorithms with more
up-to-date and secure versions. (See Chapter 20.)

▪ Making cryptographic code more agile by
removing hard-coded algorithm names, key sizes,
and other cryptographic-related settings. (See
Chapter 20.)

▪ Replacing integer arithmetic used in memory
allocations and array indexing with safer code.

There are challenges with refactoring for the sake of
refactoring—most notably, defects, usually called
regressions, could be entered into the code base
(Garrido and Johnson 2002).

598

Constant Customer Availability
The customer is a key contributor (some say the only
contributor) to user stories. The customer must also
provide the security requirements for the stories. You
can make sure nothing is missing from user stories by
building threat models for components within the
application and validating that no threats are missing
from the customer’s stories. However, to many
customers, security is an unspoken requirement. You
really have to probe customers to learn how much
security they’d like to buy. Customers won’t mention
it—they’ll just say "Make it secure!" (which, of
course, is meaningless).

Important

It’s imperative that you always consider how the
software can be misused.

When security issues arise, the customer must be
consulted once the threats are thoroughly understood.
At the meeting to review the threats, use a spike to
determine the appropriate remedy.

599

Coding to Standards
Secure coding standards must be adhered to, and
source-code analysis tools must be used regularly to
help catch various security bugs. Refer to Chapter 11,
for secure coding ideas. The beauty of coding to
standards is that you can reduce (not eliminate) the
chance that new bugs, including security bugs, are
entered into the system in the first place.

Important

Development and test tools for security play an
important role in an Agile environment due to the
absence of specifications.

600

Coding the Unit Test First
The "Coding the Unit Test First" doctrine is especially
true of fuzz tests; for any protocol you parse, or for
any payload you read and respond to, you should build
a fuzz generator for that protocol or payload. Refer to
Chapter 12, for fuzz-testing concepts. The author of
this chapter (Howard) believes security can be
significantly improved if unit security testing becomes
part of per-function or per-module unit before the
application is assembled.

601

Pair Programming
At Pairprogamming.com, the practice is described as
follows:

Two programmers working side-by-side,
collaborating on the same design, algorithm,
code or test. One programmer, the driver, has
control of the keyboard/mouse and actively
implements the program. The other
programmer, the observer, continuously
observes the work of the driver to identify
tactical (syntactic, spelling, etc.) defects and
also thinks strategically about the direction of
the work. On demand, the two programmers can
brainstorm any challenging problem. Because
the two programmers periodically switch roles,
they work together as equals to develop
software. (Pair Programming 2006)

Having a person observe while another codes is an
effective way to detect security bugs as they are
entered or, better yet, to prevent them from being
entered in the first place. You can help team members
develop security skills by pairing them with the
security expert.

602

Integrating Often
Integrating programmers’ small code updates often
will help you find security bugs faster than waiting for
large code changes.

603

Leaving Optimization Until Last
There can be a conflict between optimization and
security. Optimization itself doesn’t necessarily lead to
security bugs, but in our experience, making large
changes to the code late in the process always leads to
errors in the system. Beware.

604

When a Bug Is Found, a Test Is
Created
In the authors’ opinion, creating a test whenever a bug
is found is wise because doing so helps prevent the
bug from reentering the code base (a regression).
Every time you identify a security bug, create a test
case to find and fix the bug. Then rerun the test on
every subsequent version to make sure the bug is
indeed fixed.

605

Summary
To date, there is very little guidance for development
teams wanting to augment Agile methods, such as
Scrum and Extreme Programming, with security
discipline. Based on our conversations with Agile
proponents, most of the SDL best practices and
requirements can be easily incorporated into Agile
practice. Doing so can only be beneficial for those
using Agile methods.

606

References

607

Bibliography
[biblio18_01] (Extreme Programming 2006)
"Extreme Programming: A Gentle
Introduction,"
http://www.extremeprogramming.org/.

[biblio18_02] (Schwaber 2004) Schwaber,Ken. Agile
Project Management with Scrum. Redmond, WA:
Microsoft Press, 2004.

[biblio18_03] (Microsoft 2006) "MSF for Agile
Software Development,"
http://msdn.microsoft.com/vstudio/teamsystem/msf/
msfagile/. March, 2006.

[biblio18_04] (Kothari 2004) Kothari,Nikhil.
"Applying personas," http://www.nikhilk.net/
Personas.aspx. January 2004.

[biblio18_05] (Microsoft 2005a) Visual Studio 2005
Team Server Check-in Policy. "Walkthrough:
Customizing Check-In Policies and Notes,"
http://msdn2.microsoft.com/en-us/library/
ms181281.aspx. MSDN, 2005.

[biblio18_06] (Microsoft 2005b) Michaelis,Mark.
"Introducing Microsoft Visual Studio 2005
Team System Web Testing,"
http://msdn.microsoft.com/library/en-us/dnvs05/html/
VS05TmSysWebTst.asp. MSDN, September 2005.

608

http://www.extremeprogramming.org/
http://www.nikhilk.net/Personas.aspx
http://www.nikhilk.net/Personas.aspx

[biblio18_07] (Wikipedia 2006) "XUnit,"
http://en.wikipedia.org/wiki/XUnit.

[biblio18_08] (CppUnit 2006) "CppUnit Wiki,"
http://cppunit.sourceforge.net/cppunit-wiki.

[biblio18_09] (Fowler 2005) Fowler,Martin.
"Refactoring Home Page," www.refactoring.com.

[biblio18_10] (Jeffries 2004) Jeffries,Ron. "Big
Visible Charts," http://www.xprogramming.com/
xpmag/BigVisibleCharts.htm. October 2004.

[biblio18_11] (Cohn 2004) Cohn,Mike. User Stories
Applied: For Agile Software Development. Reading,
MA: Addison Wesley Professional Co., 2004.

[biblio18_12] (Garrido and Johnson 2002)
Garrido,Alejandra, and RalphJohnson. "Challenges
of Refactoring C Programs,"
https://netfiles.uiuc.edu/garrido/www/papers/
refactoringC.pdf. May 2002.

[biblio18_13] (Pair Programming 2006)
Williams,Laurie. "What is pair programming?"
http://www.pairprogramming.com/.

609

http://www.refactoring.com
http://www.xprogramming.com/xpmag/BigVisibleCharts.htm
http://www.xprogramming.com/xpmag/BigVisibleCharts.htm
http://www.pairprogramming.com/

Chapter 19. SDL Banned
Function Calls
In this chapter:

The Banned APIs

Why the "n" Functions Are Banned

Important Caveat

Choosing StrSafe vs. Safe CRT

Using StrSafe

Using Safe CRT

Other Replacements

Tools Support

ROI and Cost Impact

Metrics and Goals

When the C runtime library (CRT) was first created
about 25 years ago, the threats to computers were

610

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s03.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s04.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s06.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s07.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s08.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch19s10.html

different; machines were not as interconnected as they
are today, and attacks were not as prevalent. With this
in mind, a subset of the C runtime library must be
deprecated for new code and, over time, removed from
earlier code. It’s just too easy to get code wrong that
uses these outdated functions. Even some of the
classic replacement functions are prone to error, too.

Following is a partial list of Microsoft security
bulletins that could have been prevented if the banned
application programming interfaces (APIs) that led to
the security bug had been removed from the code:

Microsoft
Bulletin Number

Product and
Code

Function

MS02-039 Microsoft SQL
Server 2000

sprintf

MS05-010 License Server lstrcpy

MS04-011 Microsoft Windows
(DCPromo)

wvsprintf

MS04-011 Windows (MSGina) lstrcpy

MS04-031 Windows (NetDDE) wcscat

MS03-045 Windows (USER) wcscpy

611

You can get more info on these security bulletins at
http://www.microsoft.com/technet/security/
current.aspx. Note that many other software vendors
and projects have had similar vulnerabilities.

The Banned APIs
This list is the SDL view of what comprises banned
APIs; it is derived from experience with real-world
security bugs and focuses almost exclusively on
functions that can lead to buffer overruns (Howard,
LeBlanc, and Viega 2005). Any function in this
section’s tables must be replaced with a more secure
version. Obviously, you cannot replace a banned API
with another banned API. For example, replacing
strcpy with strncpy is not valid because strncpy is
banned, too.

Also note that some of the function names might be a
little different, depending on whether the function
takes ASCII, Unicode, _T (ASCII or Unicode) or
multibyte chars. Some function names might include A
or W at the end of the name. For example, the StrSafe
StringCbCatEx function is also available as
StringCbCatExW (Unicode) and StringCbCatExA
(ASCII).

612

http://www.microsoft.com/technet/security/current.aspx
http://www.microsoft.com/technet/security/current.aspx

Banned String Copy Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strcpy, wcscpy,
_tcscpy, _mbscpy,
StrCpy, StrCpyA,
StrCpyW, lstrcpy,
lstrcpyA, lstrcpyW,
strcpyA, strcpyW,
_tccpy, _mbccpy

String*[*]Copy
or
String*CopyEx

strcpy_s

[*] For StrSafe, * should be replaced with Cch (character
count) or Cb (byte count).

613

Banned String Concatenation
Functions and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strcat, wcscat,
_tcscat, _mbscat,
StrCat, StrCatA,
StrCatW, lstrcat,
lstrcatA, lstrcatW,
StrCatBuffW,
StrCatBuff,
StrCatBuffA,
StrCatChainW,
strcatA, strcatW,
_tccat, _mbccat

String*Cat or
String*CatEx

strcat_s

614

Banned sprintf Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

wnsprintf,
wnsprintfA,
wnsprintfW,
sprintfW, sprintfA,
wsprintf,
wsprintfW,
wsprintfA, sprintf,
swprintf, _stprintf

String*Printf or
String*PrintfEx

sprintf_s

615

Banned "n" sprintf Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

_snwprintf,
_snprintf, _sntprintf,
nsprintf

String*Printf or
String*PrintfEx

_snprintf_s or
_snwprintf_s

616

Banned Variable Argument sprintf
Functions and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

wvsprintf,
wvsprintfA,
wvsprintfW,
vsprintf,
_vstprintf,
vswprintf

String*VPrintf or
String*VPrintfEx

_vstprintf_s

617

Banned Variable Argument "n"
sprintf Functions and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

_vsnprintf,
_vsnwprintf,
_vsntprintf,
wvnsprintf,
wvnsprintfA,
wvnsprintfW,

String*VPrintf or
String*VPrintfEx

vsntprintf_s

618

Banned "n" String Copy Functions
and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strncpy, wcsncpy,
_tcsncpy,
_mbsncpy,
_mbsnbcpy,
StrCpyN,
StrCpyNA,
StrCpyNW,
StrNCpy,
strcpynA,
StrNCpyA,
StrNCpyW,
lstrcpyn,
lstrcpynA,
lstrcpynW,
_fstrncpy

String*CopyN or
String*CopyNEx

strncpy_s

619

Banned "n" String Concatenation
Functions and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strncat, wcsncat,
_tcsncat, _mbsncat,
_mbsnbcat, StrCatN,
StrCatNA,
StrCatNW, StrNCat,
StrNCatA,
StrNCatW, lstrncat,
lstrcatnA, lstrcatnW,
lstrcatn, _fstrncat

String*CatN or
String*CatNEx

strncat_s

It is common wisdom to replace functions like strcpy
with the counted "n" version, such as strncpy.
However, in our experience, the "n" functions are also
hard to secure (Howard 2004), so we have banned
their use in new code.

620

Banned String Tokenizing Functions
and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strtok, _tcstok,
wcstok, _mbstok

None strtok_s

621

Banned Makepath Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

makepath,
_tmakepath,
_makepath,
_wmakepath

None _makepath_s

622

Banned Splitpath Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

_splitpath,
_tsplitpath,
_wsplitpath

None _splitpath_s

623

Banned scanf Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

scanf, wscanf,
_tscanf, sscanf,
swscanf, _stscanf

None sscanf_s

624

Banned "n" scanf Functions and
Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

snscanf,
snwscanf,
_sntscanf

None _snscanf_s

625

Banned Numeric Conversion
Functions and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

_itoa, _itow,
_i64toa, _i64tow,
_ui64toa, _ui64tot,
_ui64tow, _ultoa,
_ultot, _ultow

None _itoa_s,
_itow_s

626

Banned gets Functions and
Replacements

Banned
APIs

StrSafe
Replacement

Safe CRT
Replacement

gets, _getts,
_gettws

String*Gets gets_s

627

Banned IsBad* Functions and
Replacements

Banned APIs

IsBadWritePtr,
IsBadHugeWritePtr,
IsBadReadPtr,
IsBadHugeReadPtr,
IsBadCodePtr,
IsBadStringPtr

These functions can mask errors,
and there are no replacement
functions. You should rewrite the
code to avoid using these APIs. If
you need to avoid a crash, wrap your
usage of the pointer with __try/
__except. Doing this can easily hide
bugs; you should do this only in
areas where it is absolutely critical
to avoid a crash (such as crash
recovery code) and where you have
a reasonable explanation for why the
data you’re looking at might be
invalid. You should also not catch
all exceptions, but only types that
you know about. Catching all
exceptions is just as bad as using
IsBad*Ptr.

For IsBadWritePtr, filling the
destination buffer using memset is a
preferred way to validate that output
buffers are valid and large enough to
hold the amount of space that the
caller claims they provided.

628

Banned OEM Conversion Functions
and Replacements

Banned APIs Windows
Replacement

CharToOem, CharToOemA,
CharToOemW, OemToChar,
OemToCharA, OemToCharW,
CharToOemBuffA,
CharToOemBuffW

WideCharToMultiByte

629

Banned Stack Dynamic Memory
Allocation Functions and
Replacements

Banned APIs Windows Replacement

alloca, _alloca SafeAllocA

For critical functions, such as those accepting
anonymous Internet connections, strlen must also be
replaced:

630

Banned String Length Functions
and Replacements

Banned APIs StrSafe
Replacement

Safe CRT
Replacement

strlen, wcslen,
_mbslen, _mbstrlen,
StrLen, lstrlen

String*Length strlen_s

631

Why the "n" Functions Are
Banned
The classic C runtime "n" functions (such as strncpy
and strncat) are banned because they are so hard to
call correctly. The authors have seen numerous errors
calling these functions in an attempt to make code
more secure. Note that we’re not saying the
replacements are perfect, but issues with the current
"n" functions include non-null termination of
overflowed buffers and no error returns on overflow.

The newer StrSafe and Safe CRT functions are more
consistent on failure.

632

Important Caveat
Simply replacing a banned function call with a better
replacement does not guarantee that the code is secure.
It’s possible to misuse the replacement function, most
commonly by getting the destination buffer size
wrong.

Best Practices

Review all instances of replaced function calls,
and verify that the destination buffer size is
correct.

633

Choosing StrSafe vs. Safe CRT
There is an overlap between these two sets of
replacement C runtime functions. Which you choose
depends on your specific situation; the following table
should help you make the decision. In some cases, you
might have little choice but to use one over the other;
for example, if your code calls itoa a great deal, there
is no replacement in StrSafe, but there is in Safe CRT.
You would need to either code around the itoa call or
use Safe CRT.

StrSafe Safe CRT

Distribution
Method

Web
(msdn.microsoft.com)

Microsoft
Visual Studio
2005

Headers One (StrSafe.h) Numerous
(various C
runtime
headers)

Library
Version
Available

Yes Yes

Inline
Version
Available

Yes No

634

StrSafe Safe CRT

Industry
Standard

No Not Yet (Secure
C Lib
Functions)

Kernel
Mode

Yes No

Return
Type

HRESULT (user mode)
or NTSTATUS (kernel
mode)

Varies by
function
(errno_t)

Requires
Code
Changes

Yes Yes

Main Focus Buffer overrun issues Various,
including buffer
overruns

635

Using StrSafe
To use StrSafe in your C or C++ code, simply add the
following header:
#include "strsafe.h"

This will make the functions inline. If you want to use
the library version, strsafe.lib, add the following to
your code:
#define STRSAFE_LIB
#include "strsafe.h"

Note that all the StrSafe functions include Rtl versions
for kernel use.

StrSafe Example
The following code
void Function(char *s1, char *s2) {

char temp[32];
strcpy(temp,s1);
strcat(temp,s2);

}

when converted to StrSafe might look like this:
HRESULT Function(char *s1, char *s2) {

char temp[32];
HRESULT hr =

StringCchCopy(temp,_countof(temp),s1);
if (FAILED(hr)) return hr;

return

636

StringCchCat(temp,_countof(temp),s2);
}

637

Using Safe CRT
The Safe CRT is included with Visual Studio 2005.
When you compile code using this compiler, it will
automatically warn you of the deprecated functions in
the code. Also, in some cases, the compiler will
change some function calls to safe function calls if the
destination buffer size is known at compile time and
CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES
is #defined in the code.

For example, the following code
int main(int argc, char* argv[]) {

char t[10];
...

if (2==argc)
strcpy(t,argv[1]);

...
return 0;

}

is changed by the compiler to this:
int main(int argc, char* argv[]) {

char t[10];
... if (2==argc)

strcpy_s(t,_countof(t),argv[1]);
...
return 0;

}

Safe CRT Example
The following code

638

void Function(char *s1, char *s2) {
char temp[32];
strcpy(temp,s1);
strcat(temp,s2);

}

when converted to the Safe CRT might look like this:
errno_t Function(char *s1, char *s2) {

char temp[32];
errno_t err =

strcpy_s(temp,_countof(temp),s1);
if (!err) return err;

return
strcat_s(temp,_countof(temp),s2);
}

639

Other Replacements
If you are using C++, you should seriously consider
using the std::string template class rather than
manipulating buffers directly.

Many *nix variants, including OpenBSD and some
Linux operating systems, include support for string
copy replacements strlcpy and strlcat (Miller and de
Raadt 1999).

640

Tools Support
The Visual Studio 2005 compiler has built-in
deprecations for these functions; all C4996 compiler
warnings should be investigated to make sure that the
function in question is not on the preceding banned
list. Also, look out for code that disables this warning,
such as #pragma warning(disable:4996).

On the CD

The companion disc accompanying this book
includes a header file named banned.h listing all
the banned APIs. If you add this as the first header
file in your application, it will detect all banned
API instances. It works and has been tested with
Microsoft Visual C++ 2003 and 2005 compilers
and GNU GCC 3.3.x.

641

ROI and Cost Impact
Removing banned APIs is one way to reduce potential
security bugs with very little engineering effort. As
you can see at the start of this document, some
Microsoft security bulletins would not have been
necessary if banned APIs had not been used.

642

Metrics and Goals
The metric to track is the number of banned APIs in
former code and in new code. The quantity should be
zero for new code and should follow a glide path
down over time for earlier code.

Important

This list of banned APIs is not static—over time,
new functions will be added as new vulnerabilities
are discovered and replacement APIs created.

643

References

644

Bibliography
[biblio19_01] (Howard, LeBlanc, and Viega 2005)
Howard,Michael, DavidLeBlanc, and JohnViega. 19
Deadly Sins of Software Development. New York,
NY: McGraw-Hill, 2005. Chapter 1, "Buffer
Overruns."

[biblio19_02] (Howard 2004) Howard,Michael.
"Buffer Overflow in Apache 1.3.xx fixed on
Bugtraq—the evils of strncpy and strncat,"
http://blogs.msdn.com/michael_howard/archive/2004/
10/29/249713.aspx. October 2004.

[biblio19_03] (Miller and de Raadt 1999)
Miller,ToddC., and TheodeRaadt. USENIX Annual
Technical Conference, "strlcpy and strlcat –
Consistent, Safe String Copy and
Concatenation," http://www.usenix.org/events/
usenix99/full_papers/millert/millert_html/index.html.
June 1999.

645

http://www.usenix.org/events/usenix99/full_papers/millert/millert_html/index.html
http://www.usenix.org/events/usenix99/full_papers/millert/millert_html/index.html

Chapter 20. SDL Minimum
Cryptographic Standards
In this chapter:

High-Level Cryptographic Requirements

Cryptographic Algorithm Usage

Data Storage and Random Number Generation

As cryptographic research evolves and computers
become faster, some cryptographic algorithms,
security protocols, cryptographic key strengths, and
usage are no longer deemed secure enough for
software products.

To put this in perspective, the Electronic Frontier
Foundation book Cracking DES claims that a specially
built $1 million computer in 1993 would take, on
average, about 3.5 hours to find a Data Encryption
Standard (DES) key (Electronic Frontier Foundation
1998). According to Moore’s Law, $1 million in 1998
could crack a DES key in about 35 minutes. If you
don’t have a spare million, spend $10,000 and you
could break the key in 2.5 days. In 2006, CPU speeds
are faster than in 1998, and memory is much cheaper.

646

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch20s02.html
D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch20s03.html

This chapter outlines guidance and standards for
writing new code or updating existing code covered by
SDL, code which should be upgraded if advances in
cryptographic research find algorithms or key sizes
inadequate.

High-Level Cryptographic
Requirements
The following sections describe at a very high level
the basic SDL cryptographic requirements and best
practices.

Cryptographic Technologies vs.
Low-Level Cryptographic
Algorithms
Whenever possible, use an established security
standard rather than creating your own solution. For
example, use SSL/TLS, IPSec, or WS-Security for
protecting ephemeral on-the-wire data rather than
creating your own authentication, key exchange,
encryption, and integrity solutions from cryptographic
primitives.

Best Practices

647

Projects are required to use standard protocols
rather than low-level cryptography when possible.
If you cannot use a standard protocol, have the
design reviewed by the central security team.

648

Use Cryptographic Libraries
Do not create your own cryptographic libraries, and
certainly do not create your own cryptographic
algorithms. For .NET code, you should use the class
libraries defined in System .Security.Cryptography
namespace (Microsoft 2006a). For C/C++ code, you
should use CryptoAPI (Microsoft 2006b). For scripts
(VBScript or JavaScript), you should use CAPICOM
(Microsoft 2001).

For correct function and method-call usage, please
refer to the references section at the end of this
chapter.

Best Practices

Projects are required to use standard
cryptographic libraries rather than create unique
cryptographic libraries or algorithms. Standard
cryptographic libraries are operating system
components specifically tasked with creating such
functionality for use by others.

649

Cryptographic Agility
Do not hard-code the cryptographic algorithm(s) used
by your application within the application code.
Instead, store the cryptographic primitive(s) used in a
configurable store—for example, in the registry or in
an XML configuration file—where they can be
updated quickly by the customer in the event of a
sudden and unpredictable change in cryptographic
technology. Note that tampering with any data store
used in this way can compromise application behavior.
Therefore, to protect the cryptographic primitives,
appropriate mitigations—such as a strong access
control policy that allows only trusted users to
manipulate the data—should be defined for the data
store. It’s also worthwhile to add the cryptographic
algorithms used by the payload. For example, the
following could represent an encrypted and MACd
data blob (RFC 2104). Note that it might look as
though you are providing a lot of useful information to
an attacker, but you aren’t—the strength of an
encryption algorithm, such as AES, lies solely in the
quality and protection of the encryption.
<?xml version="1.0" encoding="utf-8"?>
<blob version="1.2">

<encryption>
<alg id="ch20_AES"

keySize="256"
IV="LqIfly+GY0ORE3KnBjw41g=="
mode="CBC"
padding="PKCS7"/>

650

<data>qAuGOVVIpQBVd ...snip...
m13yt1ngkY8=</data>

</encryption> <authentication>
<alg id="ch20_HMACSHA56" />

<data>1y1xAI9CywYQPvau71j6eRDqgfND1yla5Hdf02xAp20=</data>
</authentication>

</blob>

Best Practices

Do not hard-code cryptographic algorithms in
your code. Projects using cryptographic functions
must be cryptographically "agile" to provide a
way to upgrade the algorithms over time.

651

Default to Secure Cryptographic
Algorithms
Use strong cryptographic algorithms by default. If a
weak algorithm is needed for backward compatibility
with older software or to comply with an industry
standard, it should be a fallback, not a default, and it
should be available only on an "opt-in" basis. Silently
falling back to weak cryptography is considered bad
practice; users should be notified if they are falling
back to a weaker algorithm. System and network
administrators should have the means to control
whether applications can use weak algorithms in their
administrative domains. Table 20-1 in the next section
defines which cryptographic algorithms are acceptable
for defaults.

Table 20-1. Cryptographic Algorithm Usage Guidance

Algorithm
Class

Algorithms
and Key Sizes
That Must Be
Replaced

Algorithms
and Key
Sizes
Okay for
Existing
Code

Required
Algorithms
and Key
Sizes for
New Code

Symmetric
Block Cipher

DES, DESX,
RC2, Skipjack

3DES (112
bit or 168
bit)

AES (>= 128
bit)

652

Algorithm
Class

Algorithms
and Key Sizes
That Must Be
Replaced

Algorithms
and Key
Sizes
Okay for
Existing
Code

Required
Algorithms
and Key
Sizes for
New Code

Symmetric
Stream Cipher

SEAL,
CYLINK_MEK,
RC4 (<128 bit)

RC4
(reviewed,
see below,
and >= 128
bit)

None—use a
block cipher

Asymmetric
Cipher

RSA or
Diffie-Hellman
(DH) (<1024
bit)

RSA or DH
(1024-2047
bit)

RSA or DH
(>=2048 bit)

Elliptic
Curve
Cryptography
(ECC)
(>=256 bit)

Hash
(includes
Hashed
Message
Authentication
Codes
[HMAC])

SHA0, MD2,
MD4 and MD5

SHA1 SHA256,
SHA384 and
SHA512
(also referred
to as the
SHA2
algorithms)

MAC key
length

<112 bit 112–127 bits >=128 bits

653

Best Practices

If a project uses multiple cryptographic
algorithms to maintain backward compatibility, it
must not default or silently fall back to the
cryptographic algorithms that are listed as ". . .
Must Be Replaced" in Table 20-1.

654

Cryptographic Algorithm Usage
This section focuses on how different algorithms
should be approached in new and earlier code. The
SDL requirements dictate that

▪ New code uses only algorithms and key lengths
from the rightmost column.

▪ Algorithms listed in the middle column are to be
used only for backward compatibility.

▪ Algorithms and key lengths listed in the left
column are not to be used in shipping products
without an exception from the central security
team.

Using any cryptographic algorithms that are not listed
in the middle or right-hand columns requires an
exception from your central security team. Be aware
that the United States federal government mandates
the use of specific cryptographic algorithms (NIST
2005).

Symmetric Block Ciphers and Key
Lengths
For symmetric block encryption algorithms, a
minimum key length of 128 bits is required for new
code (KeyLength 2006). The only block encryption
algorithm recommended for new code is AES.
(AES-128, AES-192, and AES-256 are all acceptable.)

655

Two-key (112-bit) or three-key (168-bit) 3DES are
currently acceptable if already in use in existing code.
However, transitioning to AES is highly
recommended. DES, DESX, RC2, and SKIPJACK are
no longer considered secure; continued use of these
algorithms should be for opt-in backward
compatibility only.

Best Practices

For projects using symmetric block ciphers, AES
is required for new code, and two- or three-key
3DES is permissible for backward compatibility.
All other symmetric block cipher usage, including
RC2, DES, DESX, and SKIPJACK, can be used
only for decrypting old data.

656

Symmetric Stream Ciphers and Key
Lengths
For symmetric stream ciphers, there is currently no
recommended algorithm—you should use a block
cipher, such as AES, with at least 128 bits of key
material. Existing code that uses RC4 should be using
a key size of at least 128 bits, and your application’s
use of RC4 should be reviewed by a cryptographer.
This last point is very important—there are numerous
subtle errors that can arise when using stream ciphers
such as RC4. Refer to the "References" section of this
chapter for other material outlining some of the
common errors.

Best Practices

The RC4 stream cipher should be used with
extreme caution, and any use of the algorithm
should be reviewed by a cryptographer.

Best Practices

657

All stream cipher usages must undergo a security
review. RC4 with 128-bit length key or greater is
permissible, but only after a security review. All
other usage, including RC4 <128 bit key, is
permissible only for decrypting old data.

658

Symmetric Algorithm Modes
Symmetric algorithms can operate in a number of
modes, most of which link together the encryption
operations on successive blocks of plaintext and
ciphertext. The electronic code book (ECB) mode of
operation should not be used without signoff from the
central security team. Cipher-block-chaining (CBC) is
the recommended mode of operation for block ciphers.
If, for interoperability reasons, you believe that you
need to use another chaining mode, you should talk to
the security team.

Best Practices

Projects using symmetric encryption algorithms
must use CBC.

659

Asymmetric Algorithms and Key
Lengths
For RSA-based asymmetric encryption and digital
signatures, the minimum acceptable key length is 1024
bits, and 1024-bit signature keys should be used only
for signatures with validity periods of one year or less.
New code should use RSA keys of at least 2048 bits in
length.

For DSA-based digital signatures, only 1024-bit keys
should be used (the maximum allowed by the DSA
standard) and then only for short-lived signatures (less
than one year).

For key exchange and digital signatures that are based
on elliptic curve cryptography (ECC), the three
NIST-approved curves—P-256, P-384, and
P-521—are all acceptable.

For key agreement, Diffie-Hellman is recommended,
with 2048-bit keys for new code and 1024-bit keys for
backward compatibility. Keys of 512 bits or fewer are
not to be used at all.

Best Practices

660

For projects using asymmetric algorithms, ECC
with >=256-bit keys or RSA with >=2048-bit
keys is required for new code. RSA with
>=1024-bit keys is permissible for backward
compatibility. RSA <1024-bit keys can be used
only for decrypting old data. ECC-based key
exchange and digital signatures must use one of
the three NIST-approved curves—P-256, P-384,
and P521 are all acceptable. For key agreement,
Diffie-Hellman is recommended, with >=2048-bit
keys for new code, >=1024-bit keys for backward
compatibility, and no keys using <1024 bits.

661

Hash Functions
No new code should use the MD4 or MD5 hash
algorithms because hash collisions have been
demonstrated for both algorithms, which effectively
"breaks" them in the eyes of the cryptographic
community. Continued use of SHA-1 is permissible in
existing code for backward compatibility purposes
and, as described in the next Best Practices reader aid,
for new code running on certain down-level platforms.
The SHA-2 family of hash functions (SHA-256,
SHA-384, or SHA-512) is currently the only group
that is generally recommended. The SHA-2 hash
functions are available in .NET code and in
unmanaged Microsoft Win32 code targeting Windows
Server 2003 SP1 and Windows Vista.

Note that hash function agility—the ability to switch
to another hash function without updating your
code—is part of the cryptographic agility requirement
discussed earlier in this chapter. Absent a backward
compatibility requirement, code that uses SHA-1 must
migrate to SHA-2 once SHA-2 is available on the
platform.

Best Practices

662

For .NET code, use of a SHA-2 hash function is
required. For new native Win32 code shipping to
Windows Server 2003 SP1 or Windows Vista, use
of a SHA-2 hash function is required. For new
native Win32 code shipping to earlier operating
systems (including Windows 95, Windows 98,
Microsoft Windows NT 4, and Windows 2000),
use of SHA-1 is permitted. This exemption
automatically expires if a service pack containing
SHA-2 support ships on the platform in question.
Continued use of SHA-1 is permissible for
backward compatibility. All others hash functions,
including MD2, MD4, and MD5, should not be
used.

663

Message Authentication Codes
The most common and well-known message
authentication code (MAC) function is the HMAC,
which uses a hash function and secret MAC key for
message authentication. It uses an underlying hash
function (MD5, SHA-1, or SHA-2) and a secret key of
a specified length. The strength of an HMAC relies on
the strength of the underlying hash function and the
length of the secret.

Best Practices

For HMAC usage, SHA-2 with >=128-bit keys is
required for new code. SHA-1 with >=128-bit
keys is permissible for backward compatibility.
All other keys lengths <112 bits or hash functions,
including MD2, MD4, or MD5, should not be
used.

664

Data Storage and Random
Number Generation
In this section, I will discuss issues related to
cryptography, including sensitive data storage and
generating random numbers.

Storing Private Keys and Sensitive
Data
Keys, secret data, and passwords should be protected
using the Data Protection API (DPAPI). Applications
must not embed private keys, encrypted or not, in
code.

Best Practices

Projects must use DPAPI to store secret data and
passwords.

665

Generating Random Numbers and
Cryptographic Keys
Security code and code using cryptographic
algorithms require random numbers that exhibit
unpredictability. Pseudorandom functions, such as the
C runtime function rand or system functions such as
GetTickCount, should therefore never be used in such
code. Instead, one of the following functions or
methods should be used:

▪ CryptGenRandom (for C/C++ code)

▪ rand_s (new C runtime library function that calls
CryptGenRandom)

▪ RNGCryptoServiceProvider (for .NET code)

▪ GetRandom (CAPICOM for script languages)

Best Practices

If a project is using random numbers for
cryptographic purposes, it must use
CryptGenRandom, rand_s,
RNGCryptoServiceProvider, or GetRandom.

666

Generating Random Numbers and
Cryptographic Keys from
Passwords or Other Keys
It’s sometimes necessary to use a password or other
secret data to derive cryptographic keys, typically
combined with random data such as a nonce or a salt.
Using a password directly as an encryption key is not
allowed. Direct hashing of the password should never
be used to derive session (ephemeral) keys. Direct
hashing of the password should not be used to derive
long-term (static) secret or private keys.

The supported way to derive cryptographic keys from
passwords or other secret data is to use a well-defined
and analyzed key derivation function (KDF) (RFC
2898) such as CryptDeriveKey in CAPI and
PasswordDeriveBytes or Rfc2898DeriveBytes for
.NET code.

Best Practices

If a project derives cryptographic keys from
passwords, it needs to use a key derivation
function.

667

References

668

Bibliography
[biblio20_01] (Electronic Frontier Foundation
1998) "Cracking DES," http://cryptome.org/
cracking-des.htm. First published by O’Reilly &
Associates, May 1998.

[biblio20_02] (Microsoft 2006a) Microsoft
Corporation. .NET Framework Developer’s Guide,
"Cryptographic Services,"
http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconCryptographicServices.asp. MSDN.

[biblio20_03] (Microsoft 2006b) Microsoft
Corporation. "Microsoft CryptoAPI System
Architecture," http://msdn.microsoft.com/library/
en-us/seccrypto/security/
cryptoapi_system_architecture.asp.

[biblio20_04] (Microsoft 2001) Lambert, John.
Microsoft Corporation. "Introducing CAPICOM,"
http://msdn.microsoft.com/library/en-us/dnsecure/
html/intcapicom.asp. MSDN, May 2001.

[biblio20_05] (RFC 2104) Internet Engineering Task
Force, Network Working Group. RFC 2104: "HMAC:
Keyed-Hashing for Message Authentication,"
http://www.ietf.org/rfc/rfc2104.txt. February 1997.

[biblio20_06] (NIST 2005) National Institute of
Standards and Technology. Guideline for
Implementing Cryptography in the Federal

669

http://www.ietf.org/rfc/rfc2104.txt

Government, http://csrc.nist.gov/publications/
nistpubs/800-21-1/sp800-21-1_Dec2005.pdf.

[biblio20_07] (KeyLength 2006) KeyLength.com.
"Cryptographic Key Length
Recommendation," http://www.keylength.com.

[biblio20_08] (RFC 2898) Internet Engineering Task
Force, Network Working Group. RFC 2898: "PKCS
#5: Password-Based Cryptography
Specification, Version 2.0," http://www.ietf.org/
rfc/rfc2898.txt. September 2000.

670

http://www.keylength.com
http://www.ietf.org/rfc/rfc2898.txt
http://www.ietf.org/rfc/rfc2898.txt

Chapter 21. SDL-Required
Tools and Compiler Options
In this chapter:

Required Tools

This chapter outlines the SDL-mandated
security-related tools to be used during the
development and testing processes. We focus on tools
that are publicly available from Microsoft developer
Web sites (such as MSDN) and Microsoft Visual
Studio 2005.

Required Tools
At a minimum, the following tools are required during
the development process:

▪ PREfast (Microsoft 2005)

▪ FxCop (GotDotNet 2006a)

▪ Application Verifier (Microsoft 2003)

▪ Minimum compiler and build tool versions

Let’s look at each tool in more detail.

671

PREfast
A product of Microsoft Research, PREfast is a static
analysis tool used to detect coding defects in C and
C++ code. A subset of these defects is security bugs.
PREfast was first made publicly available as part of
the Microsoft Windows Server 2003 Driver
Development Kit (DDK). The most "usable" version
of PREfast is the one in Visual Studio 2005 that is
accessible easily through a simple compiler option,
/analyze. Figure 21-1 shows where to set this option.

Figure 21-1. Setting the /analyze option in Visual Studio
2005.

The warnings described in Table 21-1 should be
triaged and fixed appropriately in your code.

Table 21-1. Defective-Code Warnings

672

Warning
Number

Description Sample Defective Code

6011 Dereferencing NULL
pointer <ptr>.

char *p = NULL;
if (argc == 2)

p = argv[1];
*p = 'A';

6029 Possible buffer overrun in
call to <function>.

char buff[80];
DWORD cbLen, cbRead;
if (!ReadFile (hFile, &cbLen,

sizeof (cbLen),
&cbRead,

NULL)) {
return;

}
if (!ReadFile (hFile, buff,
cbLen,

&cbRead,
NULL)) {

// Error!
// Need to check that

cbLen <= 80
return;

}

6053 Call to <function> might
not zero-terminate string
<variable>.

char buff[N];
strncpy(buff, input, N);
// if strlen(input) > N, buff
will not
// be zero-terminated
return strlen(buff);
// possible crash here

6057 Buffer overrun because of
number of characters or
bytes mismatched in call to
<function>.

TCHAR buff[128];
LoadString(hInst,

uID,
buff,
sizeof (buff));

// wrong in Unicode case

673

Warning
Number

Description Sample Defective Code

6059 Misuse of length parameter
in call to <function>.

char arr[10];
arr[9] = 0;
strncpy(arr, arg1, 9);
strncat(arr, arg2, 10);
// wrong: this says to copy
10 chars

6063 Format string mismatch.
char buff[5];
sprintf(buff, "%s %s", "a");

6067 Format string mismatch.
char buff[5];
sprintf(buff,

"%s %s",
"a",1);

6200 and
6201

Buffer overrun for [stack]
buffer <variable>.

char buff[5];
buff[sizeof(buff)] = '\0';

6202 and
6203

Buffer overrun for [stack]
buffer <variable> in call to
<function>.

char charArray[5];
int intArray[5];
memset ((void *)charArray, 0,

sizeof(intArray));

6204 Possible buffer overrun in
call to <function>.

char buff[10];
strcpy(buff, ptr);

6248 Setting the DACL of a
SECURITY_DESCRIPTOR
to NULL will result in an
unprotected object.

SetSecurityDescriptorDacl(pSD,

TRUE,

NULL,

FALSE);

674

Warning
Number

Description Sample Defective Code

6255 _alloca indicates failure by
raising a stack overflow
exception. Consider using
an exception handler.

_alloca(10);

6259 Labeled code is
unreachable.

switch (i & 3) {
case 0:
case 1:
case 2:
case 3:

// Reachable
break;

case 4:
// Not reachable
break;

default:
break;

}

6260 sizeof * sizeof is usually
wrong.

size_t a = sizeof (L"String")
* sizeof

(WCHAR);

6263 Using _alloca in a loop.
This can quickly overflow
the stack.

char *b;
do {

b = (char *)_alloca(9);
...

} while (1);

6268 Incorrect order of
operations.

int *ptr = (int *)(char *)p +
offset;

675

Warning
Number

Description Sample Defective Code

6276 Cast between semantically
different string types.

LPWSTR pSrc = (LPWSTR)"a";
WCHAR szBuffer[2];
wcscpy(szBuffer,pSrc);

6277 Dangerous call to
<function>: NULL
application name and
unquoted path. This will
result in security
vulnerability if the path
contains spaces.

CreateProcess(NULL,
"c:\\program

files\\foo.exe arg1",
...);

6281 Incorrect order of operators.
int x = 3, y = 7, z = 13;
if (x & y != z) {}

6282 Incorrect operator.
while (a = 5) {}

6287 Redundant code. The left
and right subexpressions are
identical.

if ((x != 1) || (x != 1)) {}

6288 Incorrect operator: Mutual
inclusion over && is always
FALSE. Was || intended?

if ((x == 1) && (x == 2)) {}

6289 Incorrect operator: Mutual
exclusion over || is always
TRUE. Was && intended?

if ((x != 1) || (x != 2)) {}

676

Warning
Number

Description Sample Defective Code

6290 Bitwise operation on logical
result. The ! character has
higher precedence than &.
Use && or (!(x & y))
instead.

if (!x & y) {}

6291 Bitwise operation on logical
result. The ! character has
higher precedence than |.
Use || or (!(x | y)) instead.

if (!x | y) {}

6296 III-defined FOR loop. Body
executed only once.

for (size_t i = 0; i < 100;
i--) { }

6298 Using a read-only string
<pointer> as a writable
string argument. This will
attempt to write into static
read-only memory and
cause random crashes.

CreateProcessA(NULL,
"MyApp.exe

-?", // RW
NULL,
NULL,
FALSE,
0,
NULL,
NULL,
&Si,
&Pi);

6299 Explicitly comparing a bit
field to a Boolean value will
yield unexpected results.

if (a.flag == 1) {} // Should
be -1

677

Warning
Number

Description Sample Defective Code

6305 Potential mismatch between
sizeof and countof
quantities.

struct S {int a; int b;} *p =
(S*)p2;
int cb = sizeof(struct S);
p += cb; // should be p+=1;

6306 Incorrect call to <function>.
va_list v;
va_start(v, pformat);
printf(pformat, v); // should
be vprintf
va_end(v);

6308 Leaking memory.
char *c;
c = (char *)malloc(10);
if (c)

c = (char
*)realloc(c,512);

6334 The sizeof operator applied
to an expression with an
operator might yield
unexpected results.

char a[10];
size_t x = sizeof (a + 1);
// should be sizeof(a) + 1

6383 Buffer overrun because of
conversion of an element
count into a byte count.

LPTSTR dest =
(LPTSTR)malloc(x * sizeof
(TCHAR));
if (dest)

_tcsncpy(dest, src, x *
sizeof (TCHAR));
// drop the * sizeof

678

FxCop
FxCop is a code-analysis tool that checks
.NET-managed code assemblies for conformance with
the Microsoft .NET Framework design guidelines,
including common security issues specific to managed
code. The following FxCop security rules (GotDotNet
2006b) should be triaged and fixed appropriately:

▪ AllowPartiallyTrustedCallers attribute (APTCA)
methods should call only APTCA methods.

▪ APTCA types should extend only APTCA base
types.

▪ Array fields should not be read-only.

▪ Call GC.KeepAlive when using native resources.

▪ Catch non-CLSCompliant exceptions in general
handlers.

▪ Do not declare read-only mutable reference types.

▪ Do not indirectly expose methods with link
demands.

▪ Method security should be a superset of type.

▪ Override link demands should be identical to
base.

▪ Pointers should not be visible.

▪ Review declarative security on value types.

679

▪ Review deny-only and permit-only usage.

▪ Review imperative security.

▪ Review Structured Query Language (SQL)
queries for security vulnerabilities.

▪ Review suppress-unmanaged code security usage.

▪ Review visible event handlers.

▪ Seal methods that satisfy private interfaces.

▪ Secure asserts.

▪ Secure GetObjectData overrides.

▪ Secure late-binding methods.

▪ Secure serialization constructors.

▪ Secured types should not expose fields.

▪ Specify marshaling for PInvoke string arguments.

▪ Static constructors should be private.

▪ Type-link demands require inheritance demands.

▪ Wrap vulnerable finally clauses in an outer try.

Figure 21-2 shows FxCop in Visual Studio 2005.

680

Figure 21-2. Setting managed-code FxCop
code-analysis options within Visual Studio 2005.

681

Application Verifier
Application Verifier (AppVerif) is a runtime
verification tool for unmanaged (in other words, not
.NET) code. It assists developers in quickly finding
subtle programming errors that can be extremely
difficult to identify with normal application testing.
AppVerif helps you create reliable applications by
monitoring an application’s interaction with the
Windows operating system and profiling its use of
kernel objects, the registry, the file system, and
Microsoft Win32 application programming interfaces
(APIs; these include heap, handles, locks, and more).
AppVerif, originally designed to help uncover
application errors early—especially application
compatibility issues—works by intercepting function
calls from the application under test and looking for
erroneous behavior.

Microsoft offers two versions of AppVerif. One is
included with Visual Studio 2005, and the other is
available as a free download. Each has advantages
over the other; the version built into Visual Studio
2005 is easier to use because it’s simply part of the
build-and-execution process (just build your
application and select Debug and then Start by using
AppVerif). The standalone downloadable version has
a higher learning curve but provides many more
security-related options and performs a more
comprehensive review of your code. Figure 21-3 and

682

Figure 21-4 show the Visual Studio 2005 AppVerif
options and the standalone version of AppVerif.

Figure 21-3. AppVerif configuration options in Visual
Studio 2005.

683

D:\working\convert\oreilly\Processed\0735637474\OEBPS\ch21.html#standalone_appverif_configured_to_monito

Figure 21-4. Standalone AppVerif configured to
monitor a test application at run time.

From the command-line prompt, you can also set up
an application to run under AppVerif by entering the
following code:
appverif /verify MyApp.exe

The /verify option will enable all the base checks:

▪ Handles. Detects erroneous use of handles,
including NULL, closed, and uninitialized
handles.

▪ Locks. Checks for issues that might lead to
deadlocks when you use synchronization methods
such as the critical section method.

▪ Exceptions. Detects first-chance exceptions. This
helps ensure that applications do not use
structured exception handling to hide access
violations.

▪ Heap. Checks for heap overruns and underruns,
double-free, and corruption.

Best Practices

It is highly recommended that you perform all
your tests by using AppVerif. Doing so helps

684

detect numerous subtle and hard-to-find defects
quickly. This recommendation applies especially
to malformed input tests such as fuzz tests.

When you are finished running all your tests, you can
enter the following command to turn off checking:
appverif /n MyApp.exe

You must run your application with all base checks
enabled; this is what the Visual Studio 2005 version
does. If using the standalone version, also enable all
Security checks.

685

Minimum Compiler and Build Tool
Versions
As security threats evolve, tool vendors should
continue to add defenses to the tools used to build
software. Microsoft has done this continually over the
last few years by upgrading the core set of compilers
and ancillary tools, especially those found in the core
development suite, Microsoft Visual Studio.
Table 21-2 outlines the required minimum versions for
various development tools and the rationale for each
tool version.

Table 21-2. Minimum Development-Tool Versions

Tool Minimum
version

Recommended
version and version
benefit

C/C++
compiler
(cl.exe)

Visual
Studio .NET
2003
13.10.3077.0

Visual Studio 2005

14.00

Improved stack-based
buffer overrun detection
(Microsoft 2004)

Linker
(link.exe)

7.10.3077.0 8.0

Improved exception
handling support

686

Tool Minimum
version

Recommended
version and version
benefit

(/SafeSEH) (Microsoft
2006)

RPC and
COM IDL
compiler
(midl.exe)

6.0.361.1 6.0.366

Improved RPC run-time
stub code

Microsoft
Visual C#
compiler
(csc.exe)

Visual
Studio .NET
2003

7.10

Visual Studio 2005

8.00

Microsoft
Visual Basic
(vbc.exe)

Visual
Studio .NET
2003

7.10

Visual Studio 2005

8.00

Unmanaged Compiler Flags
All unmanaged code (Win32 C and C++) must be
compiled with the /GS flag and linked with the
/SafeSEH flag. It is highly recommended that
prerelease debug code be compiled with the /RTC1
and /RTCc run-time check options. These options
perform the tasks described in the following table.

687

Flag Description

/RTC1 The same as /RTCsu:

▪ Detects overrun and underrun of local arrays.

▪ Performs stack-pointer verification.

▪ Sets local variables to nonzero, which can
help you find bugs that don’t appear in debug
mode.

/RTCc Reports when a value is assigned to a smaller data
type. Can help find some forms of integer
arithmetic issues caused by data truncation.

Finally, for new code, you should consider using the
/W4 warning level. Again, this can help you detect
some forms of subtle issues. New code should compile
with no warnings at this level.

688

References

689

Bibliography
[biblio21_01] (Microsoft 2005) "PREfast
Step-by-Step," http://www.microsoft.com/whdc/
DevTools/tools/PREfast_steps.mspx. April 2005.

[biblio21_02] (GotDotNet 2006a) Microsoft
Corporation. FxCop download,
http://www.gotdotnet.com/team/fxcop.

[biblio21_03] (Microsoft 2003) "Microsoft
Application Verifier," http://www.microsoft.com/
technet/prodtechnol/windows/appcompatibility/
AppVerif.mspx. TechNet, May 2003.

[biblio21_04] (GotDotNet 2006b) Microsoft
Corporation. FxCop Documentation, "Security
Rules," http://gotdotnet.com/team/fxcop/Docs/Rules/
Security.html.

[biblio21_05] (Microsoft 2004) Gregory, Kate,
Gregory Consulting. "Security Checks at
Runtime and Compile Time,"
http://msdn.microsoft.com/library/en-us/dv_vstechart/
html/securitychecks.asp. MSDN, April 2004.

[biblio21_06] (Microsoft 2006) Visual C++ Linker
Options, "/SafeSEH (Image Safe Exception
Handlers," http://msdn.microsoft.com/library/en-us/
vccore/html/
vclrfsafesehimagehassafeexceptionhandlers.asp.
TechNet, 2006.

690

http://www.microsoft.com/whdc/DevTools/tools/PREfast_steps.mspx
http://www.microsoft.com/whdc/DevTools/tools/PREfast_steps.mspx
http://www.gotdotnet.com/team/fxcop
http://www.microsoft.com/technet/prodtechnol/windows/appcompatibility/AppVerif.mspx
http://www.microsoft.com/technet/prodtechnol/windows/appcompatibility/AppVerif.mspx
http://www.microsoft.com/technet/prodtechnol/windows/appcompatibility/AppVerif.mspx

Chapter 22. Threat Tree
Patterns
In this chapter:

Spoofing an External Entity or a Process

Tampering with a Process

Tampering with a Data Flow

Tampering with a Data Store

Repudiation

Information Disclosure of a Process

Information Disclosure of a Data Flow

Information Disclosure of a Data Store

Denial of Service Against a Process

Denial of Service Against a Data Flow

Denial of Service Against a Data Store

691

Elevation of Privilege

In Chapter 9, we mentioned threat trees that reflect
common attack patterns and help application designers
think about security conditions in the system. This
chapter itemizes the threat tree patterns and discusses
what you should think about when designing and
testing an application.

Chapter 9 presented an important
table—Table 9-5—that is repeated here. The table
shows the threat types (STRIDE) that apply to each
data flow diagram (DFD) element type.

DFD Element
Type

S T R I D E

External Entity X X

Data Flow X X X

Data Store X † X X

Process X X X X X X

The dagger mark (†) in this table indicates a specific
kind of data store, notably a data store that records
logging or auditing data. This kind of data store is
subject to repudiation threats because an attacker

692

might attempt to cover his tracks by modifying or
erasing the data.

For each valid intersection in the table, a threat tree
shows the possible security-related preconditions for
that STRIDE category. The leaf nodes of each tree can
aid in secure design and security testing.

In this chapter, we’ll look at each tree as well as
associated design and security questions. Note that
some trees cascade. For example, the tree in
Figure 22-1 shows the conditions that could lead to
spoofing threats against an external entity or a process.
The circle at the right in Figure 22-1 shows tampering
threats against the authentication process. This means
that someone can indirectly spoof, say, a user by
attacking the process that determines whether the user
is who she claims to be. In some scenarios, this is a
valid attack path.

693

Figure 22-1. Threat tree for spoofing an external entity
or a process.

For every threat in your threat models, you should
consult this chapter for the appropriate threat tree and
its accompanying table—each threat tree is followed
by a related table—to confirm that you have
considered all the appropriate design and testing
concepts.

Spoofing an External Entity or
a Process
Table 22-1. Design and Test Considerations: Spoofing
External Entity or Process

Leaf Node Design Test

Weak
server-credential
storage

Are credentials
held at the
server? If yes,
how are they
protected?

Probe any
place where
credentials may
be stored to see
if the
credentials are
well protected.
Determine how
the information
is encrypted
and where the
encryption
keys are stored.
Set a known

694

Leaf Node Design Test

credential and
then scour
storage for that
credential.

Weak client-credential
storage

Are credentials
held at the
client? If yes,
how are they
protected?

See above.

Weak
key-distribution-center
(KDC) storage

Do you have a
key-distribution
center? If yes,
how are the
credentials
protected?

See above.

Weak credential
transit

How are
credentials
transmitted
between two
endpoints?

Update or set a
known
credential and
then listen on
the wire for
that credential.

Weak
credential-change
management

What is the
protocol for
updating a
credential?
How secure is

Set a known
credential and
then listen on
the wire for
that credential.

695

Leaf Node Design Test

it? Who
reviewed it?

Guess credential What is the
credential
complexity
policy? Is it
adequate? Is
there an
incorrect
credential
time-out?

Try
brute-forcing
credentials.

Credential
equivalence

Could two or
more
credentials be
treated to the
same
credential?

This is hard to
test without
using an
exhaustive
key-space
attack.

Null credential Does your
application
support a null
credential or an
account with no
password?

Try making an
anonymous
connection or a
connection
with no
password.

Downgrade
authentication

Does your
application
support an

Build a client
or server that
negotiates with

696

Leaf Node Design Test

older and
less-secure
authentication
scheme? If yes,
is the scheme
enabled by
default? If yes,
why?

the older
protocol and
then revisit the
spoofing threat
tree using the
downgraded
scheme.

Predictable credential How random is
the credential?
A good
example of a
predictable
credential is a
cookie-based
authentication
scheme that
uses
incrementing
values to
identify users.

If the endpoint
creates a
credential,
connect, look
at the cookie,
and then
connect with
another
computer and
look at the
credential. Can
you see a
pattern in the
credential?

No authentication
scheme

Do you really
need to forgo
an
authentication
scheme?

Determine the
amount of data
an
unauthenticated
user could
gather or which
assets that user

697

Leaf Node Design Test

could access.
Can that user
access more
than he or she
should?

698

Tampering with a Process

Figure 22-2. Threat tree for tampering with a process.

Table 22-2. Design and Test Considerations:
Tampering with a Process

Leaf
Node

Design Test

Input
validation
failure

Is all input verified for
correctness?

Fuzz testing
is an
effective
testing
technique
for input
validation
issues.

699

Leaf
Node

Design Test

Access to
memory

This is hard to defend against,
but for some processes,
perhaps you need to defend
against corruption of internal
state. Examples of memory
access issues include
protecting against local
administrators using
debuggers. If you do not want
to defend against this
scenario, call the scenario out
as an assumption in the threat
model: you’re not protecting
your application from
administrators with
debuggers!

Using a
debugger,
determine
what
privileges
are required
to corrupt
the internal
application
state. Again,
this attack
might be out
of scope, so
verify that it
is out of
scope in the
threat
model.

Callers Do you trust code that calls
your code? For example, do
you have a LinkDemand
(Microsoft 2005a) on your
code that does not require the
caller’s caller to have the
permissions you are link
demanding?

Try
mounting a
luring attack
(Brown
2001).

Callees Do you trust the code you
call? For example, your code

If the
application

700

Leaf
Node

Design Test

may call code that uses
CodeAccessPermission.Assert
insecurely (Microsoft 2005b).

has
extensibility
mechanisms,
build a
component
that uses
Assert to use
a permission
in an
insecure
manner.

701

Tampering with a Data Flow
You’ll notice that the threat tree in Figure 22-3
references the message and the channel. The message
is the data that travels across a channel, and you can
opt to protect the message itself from attack or to use a
protected channel. For example, you could decide to
use an application-level digital signature on the
message to protect the message, or you could use SSL/
TLS (Secure Sockets Layer/Transport Layer Security)
to provide integrity protection through the use of
message authentication codes.

Figure 22-3. Threat tree for tampering with a data flow.

Finally, there is some philosophical debate in the
author’s team about whether tampering with a data

702

flow requires you to tamper with the message and the
channel or the message or the channel. For the
moment, we’re leaving it as an "or" condition.

Table 22-3. Design and Test Considerations:
Tampering with a Data Flow

Leaf Node Design Test

Replay Is the dataflow
defended (hashed,
MAC’d, or signed)
using antireplay
defenses such as time
stamps or counters?

Replay
valid
messages.

Collisions See above. See
above.

No message
integrity

Why is there no
message integrity?
Does this component’s
DFD include an
unmitigated threat that
should be fixed?

Fuzz the
messages.

Weak message
integrity

How good is the
message-integrity
algorithm, technology,
or protocol? Is it
appropriate?

See
above.

703

Leaf Node Design Test

Violated channel
through
man-in-the-middle
(MITM)

Is the channel
protected by an
appropriate integrity
technology?

Fuzz the
channel.

No channel
integrity

Why is there no
channel integrity?
Does this component’s
DFD include an
unmitigated threat that
should be fixed?

See
above.

Weak channel
integrity

How good is the
channel-integrity
algorithm, technology,
or protocol? Is it
appropriate?

See
above.

704

Tampering with a Data Store

Figure 22-4. Threat tree for tampering with a data
store.

Table 22-4. Design and Test Considerations:
Tampering with a Data Store

Leaf Node Design Test

No protection Why is there no
protection

There is nothing
to test.

705

Leaf Node Design Test

scheme? Is this
by design?

Canonicalization
failure

Does any code
rely on a name,
such as a file
name, to
determine
access? If yes,
make sure the
code looks for
only valid
names and does
not filter out
illegal names.

Try malforming
names, trailing
dots, trailing
spaces, device
names, and so on
(Howard,
LeBlanc, and
Viega 2005).

Weak protection Look at the
permissions on
all objects to
determine
whether they
offer the correct
level of
protection.

Determine
whether
compromising the
data store as a
subject associated
with the
permission set
could lead to
application
failure. You have
a problem if the
application
consuming the
data store fails
and has higher

706

Leaf Node Design Test

privilege than the
subject that is able
to tamper with the
data store.

No monitor Is the data store
on a system that
does not support
access checks or
semantic
checks? An
example of a
semantically
different data is
numeric versus
alphabetic data;
they are both
made of ASCII
or Unicode
characters, but
they each have a
different
meaning.

For semantic
checks, test to
determine
whether type
checks exist.

Extra-monitor
access

Is all access to
the data store
throttled
through one
entry point? Is
all access totally
mediated?

Can you access
the data store
without following
the process
governing access?
For example, if an
application has

707

Leaf Node Design Test

logic to grant or
deny access to the
store, can you
access the data
store through
other means, such
as FTP or file
sharing?

Discard When the data
store is full, is
data discarded?
If so, why?

Observe what
happens when the
data store is
flooded.

Wraparound When the data
store is full, is
data written to
the beginning of
the data store?
If so, why?

See above.

Other failure
mode

When the data
store is full, is
data dropped
and not written
to the store?
Does the
application
crash? In some
cases, a crash
may be

See above.

708

Leaf Node Design Test

appropriate if a
critical security
log is full.

709

Repudiation

Figure 22-5. Repudiation threat tree.

Table 22-5. Design and Test Considerations:
Repudiation

Leaf Node Design Test

Weak signature
system

If you are using
digital signatures,

Can you access
the private keys

710

Leaf Node Design Test

is the system
strong? Consider
having a security
expert or
cryptographer
review the design.
Where are the
private keys
stored, and how
well protected are
they?

associated with
the signatures?
Make sure each
signature covers
every bit of data
you intend it to,
and make sure
that the
signature is
invalid when
any bit of data is
changed. For an
example of this
kind of failure:
(GNU Privacy
Guard 2006).

Replay attacks See "Replay" in
Table 22-3.

See "Replay" in
Table 22-3.

No logs Why are there no
logs?

There is nothing
to test.

Logs weaker
than the
authentication
system

The logging
system should be
written to only by
trusted code, and
less-trusted users
should be unable
to write directly to
the log files.

Try writing to
the log files
directly.

711

Leaf Node Design Test

Logging
unauthenticated
or weakly
authenticated
data

Data written to
logs should be
reliable and
generated by the
application
performing the
logging.

Try generating
requests of the
application
performing
logging to
determine
whether you can
write arbitrary
data that might
make it difficult
to understand
the data. A good
example of this
kind of issue is
found in Apache
1.3.x (CVE
2003).

Logging
insufficient
data

It’s important to
log appropriate
data to aid in
supporting
repudiation claims.
Are you logging
enough data? You
might want to talk
to a
computer-forensics
expert or
computer-auditing
expert to
determine an

There is nothing
to test.

712

Leaf Node Design Test

appropriate level
of logging.

713

Information Disclosure of a
Process

Figure 22-6. Threat tree for information disclosure of a
process.

Table 22-6. Design and Test Considerations:
Information Disclosure of a Process

714

Leaf
Node

Design Test

Input
validation
failure

See "Input validation
failure" in Table 22-2.

See "Input
validation
failure" in
Table 22-2.

Access to
memory

See "Access to memory" in
Table 22-2.

See "Access
to memory" in
Table 22-2.

Side
channels

Could any side channels
(Wikipedia 2006) disclose
data? An example of a side
channel is the existence of
a special file, which means
the process handles certain
sensitive data. For a
discussion of other
examples of side channels:
(CERT 2001, Anley 2002,
CERT 2002a, CERT 2003,
Lucas 2005, SecuriTeam
2005, Mimoso 2006).

Side channels
can be hard to
test for; a best
practice is to
review past
side-channel
exploitations
(see the list in
the Design
column in this
table) to
determine
whether they
could occur in
your software.

715

Information Disclosure of a
Data Flow

Figure 22-7. Threat tree information disclosure of a
data flow.

Table 22-7. Design and Test Considerations:
Information Disclosure of a Data Flow

Leaf node Design Test

No message
confidentiality

Why is there
no message
confidentiality?
What is the
impact if the
data is
disclosed?

Can you view any
sensitive data that
should be
protected?

716

Leaf node Design Test

Weak message
confidentiality

Is the data well
defended?
What
cryptographic
algorithms are
used, and
where are the
keys stored?

Can you access
the keys, or is the
encryption really
"encraption"?

Channel
observable
through
man-in-the-middle
(MITM)

If a rogue
listener can be
placed between
two endpoints
on the data
flow, can the
listener read
the data?

Build a
man-in-the-middle
tool, perhaps a
proxy, to listen
and potentially
read the data.

No channel
confidentiality

Why is there
no channel
confidentiality?
What is the
impact if the
data is
disclosed?

Can you view
sensitive data that
should be
protected?

Side channels See "Side
channels" in
Table 22-6.

See "Side
channels" in
Table 22-6.

717

Information Disclosure of a
Data Store

Figure 22-8. Threat tree for information disclosure of a
data store.

Table 22-8. Design and Test Considerations:
Information Disclosure of a Data Store

Leaf Node Design Test

Canonicalization
failure

See
"Canonicalization
failure" in
Table 22-4.

See
"Canonicalization
failure" in
Table 22-4.

Weak protection See "Weak
protection" in
Table 22-4.

See "Weak
protection" in
Table 22-4.

718

Leaf Node Design Test

Other
consumers

Are there
data-store
consumers other
than this
application (for
example,
indexing or
searching
applications)?

Can you use
other methods
(such as search
engines) to reveal
the protected
data?

No protection See "No
protection" in
Table 22-4.

See "No
protection" in
Table 22-4.

No encryption If the data is not
encrypted, are
other protections
good enough?

Is the data
viewable in the
data store when
accessed using a
simple hex-dump
tool?

Extra-monitor
access

See
"Extramonitor
access" in
Table 22-4.

See
"Extramonitor
access" in
Table 22-4.

Side channels See "Side
channels" in
Table 22-6.

See "Side
channels" in
Table 22-6.

719

Leaf Node Design Test

Occluded data Does your
application
support undo or
recovery
operations? Does
it support object
properties that
might contain
sensitive data? If
so, how will you
erase this data?
For a good
reference for
dealing with
these issues:
(National
Security Agency
2006).

If the application
supports "hiding"
data, enter some
known text, hide
the data, and then
search the file on
disk for the data.
Although the data
might not be
visible in the
application, it
might be visible
when you
perform a binary
scan.

Failure to
initialize storage
correctly

Is storage in the
data store set to a
known value
before use? If
not, why? Setting
data to a known
value is rarely a
performance
issue.

If possible, set a
known data value
in the
uninitialized data
store. Then when
the application
runs, find out if
you can still read
the data.

Failure to clear
storage correctly

Is storage in the
data store set to a

Set data to a
known value.

720

Leaf Node Design Test

known value
after use? If not,
why? Setting data
to a known value
is rarely a
performance
issue.

When the
application has
finished using the
data, scour the
data store to see
if the data is still
there. For
interesting
examples of
failure to scrub
data correctly:
(Howard 2002,
Chow et al.
2005).

Note

Some information disclosure threats can be
privacy issues if the data being disclosed is
private or personally identifiable information
(PII). Refer to Chapter 8, for more information on
the subject.

721

Denial of Service Against a
Process

Figure 22-9. Threat tree for denial of service against a
process.

Table 22-9. Design and Test Considerations: Denial
of Service Against a Process

Leaf Node Design Test

Application-specific
resource
consumption

Are there limits on
application-specific
resource
consumption? Can
unprivileged users
consume large
quantities of such
resources? For a
good example of
malicious resource

Identify all
application-specific
resources and
determine what
privilege level is
required to
consume the
resources. There
are issues if
low-trust or
anonymous users

722

Leaf Node Design Test

consumption:
(CERT 2002b).

can consume large
quantities of
application-specific
resources.

Fundamental
resource
consumption

Are there limits on
fundamental
resource
consumption, such
as memory, CPU,
network
bandwidth, or disk
space? Can
unprivileged users
consume large
quantities of such
resources?

Attempt to
consume large
quantities of
fundamental
resources as an
untrusted user.

Input validation Is all input
validated for
correctness? Input
validation is a
broader variation
of the
canonicalization
issues noted
previously, because
even valid input
could trigger
infinite recursions
or cause the

Do intelligent fuzz
testing.

723

Leaf Node Design Test

application to
consume large
amounts of CPU
time.

724

Denial of Service Against a
Data Flow

Figure 22-10. Threat tree for denial of service against a
data flow.

Table 22-10. Design and Test Considerations: Denial
of Service Against a Data Flow

Leaf Node Design Test

Preplay An adversary makes
a preplay attack
when she performs

Build tests that
perform partial
communication.

725

Leaf Node Design Test

an action before the
valid application
does so. How does
your application
respond to such
attacks? How do you
ensure that the action
is performed by a
valid user and not an
attacker?

Then have another
computer or process
inject the
continuation of the
protocol.

No message
integrity

See "No message
integrity" in
Table 22-3.

See "No message
integrity" in
Table 22-3.

Weak message
integrity

See "Weak message
integrity" in
Table 22-3.

See "Weak message
integrity" in
Table 22-3.

Squatting Can the data flow
name (pipe name, for
example) be hijacked
or squatted?

Get a list of all the
data flow names
used by the
application, create
all these names
ahead of time, and
then start the
application to see if
the data flows are
valid.

726

Leaf Node Design Test

Fundamental
resources
consumption

See "Fundamental
resources
consumption" in
Table 22-9.

See "Fundamental
resources
consumption" in
Table 22-9.

Application-specific
resources
consumption

See
"Application-specific
resources
consumption" in
Table 22-9.

See
"Application-specific
resources
consumption" in
Table 22-9.

Falsified control
messages

Does the application
use any messages to
control the flow of
data across the data
flow? Is there a
state-machine or
transition diagram
(Young 2000) used
to determine the
correct flow order?
If so, how well is the
state-machine
followed?

Get a list of control
messages used by
the application
protocols and then
fuzz them. Don’t
fuzz the message
data; just fuzz the
control messages, or
create out-of-order
messages or
incorrect messages.
Also, if there is a
state-machine, try to
build messages that
violate the normal
transition flow.

727

Denial of Service Against a
Data Store

Figure 22-11. Threat tree for denial of service against a
data store.

Table 22-11. Design and Test Considerations: Denial
of Service Against a Data Store

Leaf Node Design Test

Weak protection See "Weak
protection" in
Table 22-4.

See "Weak
protection" in
Table 22-4.

728

Leaf Node Design Test

No protection See "No monitor" in
Table 22-4.

See "No monitor" in
Table 22-4.

Squatting See "Squatting" in
Table 22-12.

See "Squatting" in
Table 22-12.

Fundamental
resources
consumption

See "Fundamental
resources
consumption" in
Table 22-9.

See "Fundamental
resources
consumption" in
Table 22-9.

Application-specific
resources
consumption

See
"Application-specific
resources
consumption" in
Table 22-9.

See
"Application-specific
resources
consumption" in
Table 22-9.

Deny access to
store

What happens if the
application is denied
access to the data
store? Is there a
permission on the
object that allows
untrusted users to
deny access to or
lock the file?

Try denying access
to the file (for
example, in
Microsoft Windows,
by setting an
Everyone Deny-All
ACE to the data
store), or try locking
the data source.

729

Elevation of Privilege

Figure 22-12. Threat tree for elevation of privilege.

Table 22-12. Design and Test Considerations:
Elevation of Privilege

Leaf Node Design Test

Input
validation
failure

See "Input validation
failure" in Table 22-2.

See "Input
validation
failure" in
Table 22-2.

Access to
memory

See "Access to memory"
in Table 22-2.

See "Access
to memory"

730

Leaf Node Design Test

in
Table 22-2.

Cross-domain
issues

Applications that host
potentially malicious
script from the Internet
enforce a security model,
often called the
cross-domain security
model or same-origin
policy. All Web
browsers do this, as do
application frameworks
like Java and Microsoft
.NET Framework. The
cross-domain security
model prevents script
and code that originated
from one domain from
interacting with content
from another domain.
The intention is to
prevent script from a
malicious Web site from
having access to content
from Hotmail.com in the
security context of the
user accessing
Hotmail.com.

Can the
application
host
multiple
instances of
a Web
browser
rendering
engine? If
so, can
script
running in
one instance
of the Web
browser
manipulate
the other
Web
browser
instance? If
your
application
has an
object
model
accessible to
script
running in a
Web

731

Leaf Node Design Test

browser,
how can
malicious
script from
the Internet
abuse the
object
model?

Call-chain
issues

See "Callers" and
"Callees" in Table 22-2.

See
"Callers"
and
"Callees" in
Table 22-2.

732

References

733

Bibliography
[biblio22_01] (Microsoft 2005a) .NET Framework
Developer’s Guide, "Demand vs. LinkDemand,"
http://msdn2.microsoft.com/en-us/library/
3ky50t49.aspx. MSDN, 2005.

[biblio22_02] (Brown 2001) Brown,Keith. "Security
in .NET: Enforce Code Access Rights with the
Common Language Runtime,"
http://msdn.microsoft.com/msdnmag/issues/01/02/cas/.
MSDN Magazine, February 2001.

[biblio22_03] (Microsoft 2005b) .NET Framework
Developer’s Guide, "Using the Assert Method,"
http://msdn2.microsoft.com/en-us/library/
91wteedy.aspx. MSDN, 2005.

[biblio22_04] (Howard, LeBlanc, and Viega 2005)
Howard,Michael, DavidLeBlanc, and JohnViega. 19
Deadly Sins of Software Development. New York,
NY: McGraw-Hill, 2005. Chapter 15, "Improper File
Access."

[biblio22_05] (GNU Privacy Guard 2006)
Koch,Werner. "GnuPG does not detect injection
of unsigned data," http://lists.gnupg.org/pipermail/
gnupg-announce/2006q1/000216.html. March 2006.

[biblio22_06] (CVE-2003-0020) Common
Vulnerabilities and Exposures. "Terminal Emulator
Security Issues," http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2003-0020.

734

[biblio22_07] (Wikipedia 2006) "Side channel
attack," http://en.wikipedia.org/wiki/
Side-channel_attack.

[biblio22_08] (CERT 2001) US-CERT.
"Vulnerability Note VU#959207, Lotus Notes
Java VM leaks file existence through timing
difference in ECLs," http://www.kb.cert.org/vuls/
id/959207. May 2001.

[biblio22_09] (Anley 2002) Anley, Chris,
NGSSoftware. "(more) Advanced SQL
Injection," http://www.ngssoftware.com/papers/
more_advanced_sql_injection.pdf. June 2002.

[biblio22_10] (CERT 2002a) US-CERT.
"Vulnerability Note VU#156123, Microsoft
Office Web Components allow arbitrary user
to determine whether local file exists via
Chart component ‘Load’ method,"
http://www.kb.cert.org/vuls/id/156123. September
2002.

[biblio22_11] (CERT 2003) US-CERT.
"Vulnerability Note VU#888801, SSL/TLS
implementations disclose side channel
information via PKCS #1 v1.5 version number
extension," http://www.kb.cert.org/vuls/id/888801.
April 2003.

[biblio22_12] (Lucas 2005) Lucas,MichaelW.
"Information Security with Colin Percival,"

735

http://www.kb.cert.org/vuls/id/959207
http://www.kb.cert.org/vuls/id/959207
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
http://www.kb.cert.org/vuls/id/156123
http://www.kb.cert.org/vuls/id/888801

http://www.onlamp.com/pub/a/bsd/2005/07/21/
Big_Scary_Daemons.html. July 2005.

[biblio22_13] (SecuriTeam 2005) SecuriTeam Blog.
"Side-channel attacks and listening to
keyboards," http://blogs.securiteam.com/index.php/
archives/89. September 2005.

[biblio22_14] (Mimoso 2006) Mimoso,Michael,
SearchSecurity.com. "Crypto panel takes on
RFID, bashed hash functions,"
http://searchsecurity.techtarget.com/originalContent/
0,289142,sid14_gci1166550,00.html. February 2006.

[biblio22_15] (National Security Agency 2006)
"Report # I333-015R-2005, Redacting with
Confidence: How to Safely Publish Sanitized
Reports Converted from Word to PDF,"
http://www.nsa.gov/notices/notic00004.cfm?Address=/
snac/vtechrep/I333-TR-015R-2005.PDF. February
2006.

[biblio22_16] (Howard 2002) "Some Bad News
and Some Good News,"
http://msdn.microsoft.com/library/en-us/dncode/html/
secure10102002.asp. MSDN, October 2002.

[biblio22_17] (Chow et al. 2005) Chow,Jim,
BenPfaff, TalGarfinkel, and MendelRosenblum,
Stanford University Department of Computer Science.
"Shredding Your Garbage: Reducing Data
Lifetime Through Secure Deallocation,"
http://www.stanford.edu/~blp/papers/shredding.html/.

736

http://www.onlamp.com/pub/a/bsd/2005/07/21/Big_Scary_Daemons.html
http://www.onlamp.com/pub/a/bsd/2005/07/21/Big_Scary_Daemons.html
http://www.nsa.gov/notices/notic00004.cfm?Address=/snac/vtechrep/I333-TR-015R-2005.PDF
http://www.nsa.gov/notices/notic00004.cfm?Address=/snac/vtechrep/I333-TR-015R-2005.PDF
http://www.stanford.edu/~blp/papers/shredding.html/

14th USENIX Security Symposium, July/August
2005.

[biblio22_18] (CERT 2002b) US-CERT.
"Vulnerability Note VU#539363, State-based
firewalls fail to effectively manage session
table resource exhaustion,"
http://www.kb.cert.org/vuls/id/539363. October 2002.

[biblio22_19] (Young 2000) Young,Warren. Winsock
Programmer’s FAQ. "Debugging TCP/IP,"
http://tangentsoft.net/wskfaq/articles/
debugging-tcp.html.

737

http://www.kb.cert.org/vuls/id/539363

Appendix . Appendix
Michael Howard

Michael Howard, CISSP, is a Senior Security Program
Manager in the Security Technology Unit at
Microsoft. He is the author of many security articles
and books, including the award-winning Writing
Secure Code and 19 Deadly Sins of Software Security,
writes regularly for industry magazines, and is a
co-editor of IEEE Security and Privacy. He is part of
the team responsible for defining and delivering
security education, defining the Security Development
Lifecycle, researching new threats and defenses, and
working with Microsoft product groups to help them
build more secure software. He is the inventor of four
patents in the field of software security.

Steven B. Lipner

Steven B. Lipner, CISSP, is Senior Director of
Security Engineering Strategy in the Security

738

Technology Unit at Microsoft. He is responsible for
the definition and updating of the Security
Development Lifecycle, which Microsoft applies to
improve the security and privacy of its products. Mr.
Lipner is also responsible for Microsoft’s policies and
strategies for the security evaluation of its products,
and for the development of programs to provide
improved product security to Microsoft customers.
Mr. Lipner has over thirty years’ experience as a
researcher, development manager, and general
manager in IT security. He is named as co-inventor on
eleven patents in the field of computer and network
security. Mr. Lipner holds S.B. and S.M. degrees from
the Massachusetts Institute of Technology and
attended the Harvard Business School’s Program for
Management Development. He is a member of the
United States Information Security and Privacy
Advisory Board, a Certified Information Systems
Security Professional, and a member of the ISC2

Americas Advisory Board.

739

740

Index

741

Symbols
3DES, SDL Minimum Cryptographic Standards,
Symmetric Block Ciphers and Key Lengths

(see also .)

742

A

743

access control lists (see .)
access controls, code setting, Code Reviews
access violations, not using structured exception
handling to hide, Application Verifier
access, restricting, Define Use Scenarios
accessibility, increasing attack surface, Step 2: Who
Needs Access to the Functionality and from Where?
accounts

adding users to the local administrator’s group,
Mainline Product Use Documentation
creating with limited privileges, Step 3: Reduce
Privilege

acknowledgements to security researchers,
Managing the security researcher relationship
ACLs (access control lists)

configuring, Pet Shop 4.0 Security Assumptions
creating an empty, Do Not Use Banned Functions
examples of weak, More Attack Surface Elements
reviewing, More Attack Surface Elements
verifying for every object, Attack-Surface Scrub

ActiveX code vs. .NET, More Attack Surface
Elements
ActiveX controls

744

arguments to, Malforming packets on the fly
larger attack surface of, More Attack Surface
Elements
marked safe for scripting, More Attack Surface
Elements
marked safe for scripting vs. not, Managed Code
AllowPartiallyTrustedCallers Attribute
reviewing methods and properties on, Analyzing
the Questionnaire
SiteLocked, ActiveX "Safe for Scripting"
uninstalling XCP DRM software, More Attack
Surface Elements

ActiveX developer, restricting to the SiteLocking
control, ActiveX "Safe for Scripting"
ad hoc remote queries, Managed Code
AllowPartiallyTrustedCallers Attribute
adaptability under Agile methods, Security Response
Execution
AdjustTokenPrivileges, calling, Step 3: Reduce
Privilege
administrator

745

as all-powerful in Windows, Create External
Security Notes
vs. authenticated user access, Managed Code
AllowPartiallyTrustedCallers Attribute
not handling any user requests in IIS6, Step 3:
Reduce Privilege
operating a computer as, Worlds of Security and
Privacy Collide
running code, Managed Code
AllowPartiallyTrustedCallers Attribute

administrators, Attack-Surface Scrub

(see also .)
accessibility to authenticated users vs., Identify
Threats to the System
giving help in controlling systems, Stage 5:
Creating Security Documents, Tools, and Best
Practices for Customers

Administrators group, excluding, Step 3: Reduce
Privilege
adversaries, making security researchers into,
Managing the security researcher relationship
AES block encryption algorithm, Symmetric Block
Ciphers and Key Lengths
Agile design philosophy, Project Inception
Agile doctrines, listing of, Security Response
Execution
Agile environment, development and test tools,
Coding to Standards
Agile methods, CMMI, TSP, and PSP

746

augmenting the rules and practices of, Integrating
SDL with Agile Methods
augmenting with SDL practices, Security
Response Execution
no employing full-fledged FSR, Security Push
integrating SDL with, Integrating SDL with Agile
Methods
up-front groundwork required by, Using SDL
Practices with Agile Methods
using SDL practices with, Using SDL Practices
with Agile Methods

Alert and Mobilize phase of the SSIRP, Watch phase
Allchin, Jim, A Challenge to Large ISVs, Is the SDL
Necessary for You?
_alloca in a loop warning in PREfast, PREfast
AllowPartiallyTrustedCallers attribute (APTCA)

increasing the attack surface of code, ActiveX
"Safe for Scripting"
security rule in FxCop, FxCop
strong-named assemblies marked with, ActiveX
"Safe for Scripting"

always-on computer, automatic updates enabled,
Stage 5: Creating Security Documents, Tools, and
Best Practices for Customers
amplification of DoS threats, Determine Risk
analysis tools (see .)
analytical threat-modeling technique, Risk Analysis
/Analyze feature in Visual Studio 2005, Seeking
Scalability: Through Windows XP

747

/analyze compiler option in Visual Studio 2005,
SDL-Required Tools and Compiler Options
analyze step of the model-building process, What to
Model
anonymous access

vs. authenticated user access, ActiveX "Safe for
Scripting"
blocking by default, Creating the fix

anonymous data, Analyzing the Questionnaire
anonymous Internet attacks, Enough Is Enough: The
Threats Have Changed
anonymous network-facing interfaces, Threat Model
Updates
anonymous users

accessibility to, Identify Threats to the System
consuming resources, Denial of Service Against a
Process
products primarily accessed by, Building the
Threat Model

antivirus vendors, Watch phase
Apache

as the most compromised Web server on the
Internet, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
attacks on, It’s Really About Quality
privilege model on *nix, Step 3: Reduce Privilege
version 2.0 having more security bugs than
Apache 1.3, "Many Eyeballs" Misses the Point
Altogether

748

apache account, Step 3: Reduce Privilege
APIs (application programming interfaces)

banned, The Banned APIs
dangerous, Consume the file and observe the
application
Microsoft security bulletins involving banned,
SDL Banned Function Calls
miscellaneous parsers and, Fuzz Testing
not using banned, Risk Analysis
replacing banned with safer, Refactoring

Application Compatibility Toolset, AppVerif in,
Consume the file and observe the application
application vendors, unaware of security issues,
Enough Is Enough: The Threats Have Changed
Application Verifier (see .)
applications

749

attack surface of, Common Secure-Design
Principles, ActiveX "Safe for Scripting"
building with an understanding of firewalls,
Managed Code AllowPartiallyTrustedCallers
Attribute
continuously monitoring users, Privacy Ranking 1
costs of building secure, Stage 3: Product Risk
Assessment
creating DFDs during modeling, Create One or
More DFDs of the Application Being Modeled
cybercriminal attacks on, Enough Is Enough: The
Threats Have Changed
determining the source of failure, Malform a file
determining whether covered by SDL, Stage 1:
Project Inception
external dependencies, Define Use Scenarios
installing new software or changing file-type
associations, Privacy Ranking 1
observing after file consumption, Malform a file
parsing files or network traffic, Analyzing the
Questionnaire
running under a debugger, Consume the file and
observe the application
running under AppVerif, Consume the file and
observe the application
running using fault injection in AppVerif,
Consume the file and observe the application
security state of, Enough Is Enough: The Threats
Have Changed
setting to run under AppVerif, Application
Verifier

750

splitting into more than one executable process,
Step 3: Reduce Privilege
storing or transferring PII, Privacy Ranking 1
targeted at children, Privacy Ranking 1
transferring anonymous data to, Privacy Ranking
1
trust boundaries of, What to Model
upgrading from competitors, Summary

AppScan, as Web specific, Source-Code Analysis
Tool Traps
AppVerif test tool, SDL-Required Tools and
Compiler Options, Application Verifier

classes of errors caught by, Consume the file and
observe the application
detecting weak ACLs, Do Not Use Banned
Functions
disabling monitoring, Consume the file and
observe the application
not testing the application, Consume the file and
observe the application
performing all tests using, Application Verifier
run-time verification testing, Penetration Testing
setting to use, Consume the file and observe the
application
tool for unmanaged Microsoft Win32 code,
Consume the file and observe the application
/verify command-line argument, Consume the file
and observe the application
versions of, Application Verifier

APTCA (see .)

751

architects, reviewing threat models, Code Reviews
architecture

fixing defects found during, Stage 4: Risk Analysis
revalidating, Stage 4: Risk Analysis

argument checking, Safe Exception Handling:
/SAFESEH
Arithmetic Error predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
arrowed line shape in a DFD, Create One or More
DFDs of the Application Being Modeled
ASA (Attack Surface Analysis), Common
Secure-Design Principles, Attack Surface Analysis
and Attack Surface Reduction

class on, Ongoing Education
as important as trying to secure the code,
Summary
measuring, Security Pushes and Final Security
Reviews
reducing code accessible to untrusted users,
Attack Surface Analysis and Attack Surface
Reduction
by the Security Advisor, Holding an SDL
Kick-Off Meeting for the Development Team

ASN.1 network protocol-parsing, Your Development
Team Will Make Mistakes
ASP.NET

752

defensive methods added to, Security Pushes and
Final Security Reviews
enforcing authentication, Pet Shop 4.0 Security
Assumptions
running as a non-admin account, Managed Code
AllowPartiallyTrustedCallers Attribute

ASR (Attack Surface Reduction), Security Pushes
and Final Security Reviews, Common Secure-Design
Principles

class on, Ongoing Education
compromising between perfect safety and
unmitigated risk, Attack Surface Analysis and
Attack Surface Reduction
core tenet of, Attack Surface Analysis and Attack
Surface Reduction
high level focuses, Attack Surface Analysis and
Attack Surface Reduction
as important as getting the code right, Managed
Code AllowPartiallyTrustedCallers Attribute
threat modeling contributing to, Stage 4: Risk
Analysis

Assess and Stabilize phase

producing mitigations and workarounds, Watch
phase
of the SSIRP, Watch phase

assessment from the triage process, Triaging
assets, Risk Analysis

(see also .)

753

asymmetric algorithms, Symmetric Stream Ciphers
and Key Lengths
asymmetric cipher algorithms, Symmetric Block
Ciphers and Key Lengths
asynchronous orders, Create One or More DFDs of
the Application Being Modeled
attack surface

of an application, Common Secure-Design
Principles
attributes contributing to larger or smaller,
ActiveX "Safe for Scripting"
code with a large, Attack Surface Analysis and
Attack Surface Reduction
elements of, More Attack Surface Elements
increased by accessibility, Step 2: Who Needs
Access to the Functionality and from Where?
questions in the Security Risk Assessment, Stage
3: Product Risk Assessment
reducing, Stage 2: Define and Follow Design Best
Practices, Step 2: Who Needs Access to the
Functionality and from Where?, Managed Code
AllowPartiallyTrustedCallers Attribute
reevaluating, Reevaluating the Attack Surface of
the Software
setup document not a replacement for, Creating
Prescriptive Security Best Practice
Documentation
of a software product, Common Secure-Design
Principles
steps to reduce, Attack Surface Analysis and
Attack Surface Reduction

754

Attack Surface Analysis (see .)
Attack Surface Analysis (ASA) and Attack Surface
Reduction (ASR) class, Ongoing Education
Attack Surface Rationale document, What’s on the
Companion Disc?
Attack Surface Reduction (see .)
Attack Surface Reduction predefined value, Make
Sure the Bug-Tracking Process Includes Security
and Privacy Bug Fields
attack-surface analysis (see .)
attack-surface document, updating, Attack-Surface
Scrub
attack-surface scrub, Threat Model Updates
attackability, ranking system entry points by,
Ongoing Education
attacked computer, attacking all computers on a
subnet, Determine Risk
attackers, Enough Is Enough: The Threats Have
Changed

(see also .)
attacking all code, Training
turning attention from Microsoft to others, Is the
SDL Necessary for You?

attacks

755

anonymous, Enough Is Enough: The Threats
Have Changed
at the dawn of the commercial Internet, First
Steps
determining the chance of, Identify Threats to the
System
disrupting customers’ IT operations,
Commitment at Microsoft

attendance, security class, Tracking Attendance and
Compliance
audit data store, Identify Threats to the System
audit logs, reliability and, Another Factor That
Influences Security: Reliability
audit policy, defining an appropriate, Creating Tools
audit-log facility, Create One or More DFDs of the
Application Being Modeled
authenticated users

accessibility to vs. administrators, Managed Code
AllowPartiallyTrustedCallers Attribute, Identify
Threats to the System
accessibility to vs. anonymous, ActiveX "Safe for
Scripting", Identify Threats to the System

authentication

756

database server protecting, Pet Shop 4.0 Security
Assumptions
logs weaker than, Repudiation
at the lowest level of a system, Step 2: Who Needs
Access to the Functionality and from Where?
mitigation technique against spoofing, Plan
Mitigations
not creating your own, Step 2: Who Needs Access
to the Functionality and from Where?
raising a privacy issue, Worlds of Security and
Privacy Collide
supporting an older and less-secure scheme,
Spoofing an External Entity or a Process
technologies used with, as a mitigation technique,
Counter the Threat with Technology
two-factor, Common Secure-Design Principles
Windows compared to native, Pet Shop 4.0
Security Assumptions

authorization

at the lowest level of a system, Step 2: Who Needs
Access to the Functionality and from Where?
mitigation technique against EoP, Plan
Mitigations
mitigation technique technologies, Counter the
Threat with Technology
not creating your own, Step 2: Who Needs Access
to the Functionality and from Where?

authorization key, data used as, Privacy Impact
Rating

757

automated updates, value of, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
Automatic Update feature of Windows, Testing
automatic updating, Content creation

Microsoft’s, Make Your Product Updatable

availability, Plan Mitigations, Counter the Threat
with Technology
availability property of CIA, Create One or More
DFDs of the Application Being Modeled

758

B

759

B2 security evaluation, First Steps
background information, Stage 4: Risk Analysis
backlog, code cleanup as a major component of,
Secure Coding and Testing Policies
backward compatibility

algorithms to be used only for, Cryptographic
Agility
issues not addressed in the setup application,
Creating Prescriptive Security Best Practice
Documentation
often less secure than present functionality,
Mainline Product Use Documentation
security changes compromising, Stop Products
weak algorithms needed for, Cryptographic
Agility

bad-parameter checking, Security Pushes and Final
Security Reviews
Ballmer, Steve, Stage 0: Education and Awareness
banned APIs, The Banned APIs

adding to the list of, ROI and Cost Impact
listing of all, Safe CRT Example
not using, Risk Analysis
removing, as a way to reduce potential security
bugs, ROI and Cost Impact
replacing with safer APIs, Refactoring
tracking in former code and new code, ROI and
Cost Impact

banned functions, not using, Benefits of Source-Code
Analysis Tools

760

banned.h (C/C++ header file), What’s on the
Companion Disc?
Basics of Secure Software Design, Development, and
Test presentation, The, A Short History of Security
Education at Microsoft
Basics of Secure Software Design, Development, and
Testing class, The, A Short History of Security
Education at Microsoft
Basics, The (online video presentation), The Future
Evolution of the SDL
Beale, Jay, "Many Eyeballs" Misses the Point
Altogether
Bell-LaPadula Disclosure model, Ongoing Education
best practices, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers

(see also .)
for coding, Stage 6: Secure Coding Policies

beta software, giving researchers early access to,
Managing the security researcher relationship
beta test release, planning a final after the security
push, Stage 8: The Security Push
Biba integrity model, Ongoing Education
bidirectional data flows, Identify Threats to the
System
big endian structure, Malform a file
Big Visible Charts (see .)
biometric information, Privacy Impact Rating
bit field, FxCop
BitBlt, A generic file-fuzzing process
bits, toggling, setting, or clearing, Malform a file

761

Blaster worm, Step 2: Who Needs Access to the
Functionality and from Where?, Benefits of
Source-Code Analysis Tools
Boebert, Earl, Your Development Team Will Make
Mistakes
bogus packets, Fuzzing Network Protocols
bolting on security and privacy, Common
Secure-Design Principles
Brooks, Fred, Current Software Development
Methods Fail to Produce Secure Software
browser component of Windows (see .)
browser-pluggable protocol handlers, Fuzz Testing
Buffer Overflow or Underflow predefined value,
Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields
buffer overrun vulnerability in the UPnP component
of Windows XP, Seeking Scalability: Through
Windows XP
buffer overruns

detecting at run time, Use the Latest Compiler
and Supporting Tool Versions
detecting in individual modules, Seeking
Scalability: Through Windows XP
functions leading to, The Banned APIs

buffer security check:/GS, Use the Latest Compiler
and Supporting Tool Versions
bug bar

defining characteristics of a threat, Identify
Threats to the System
determining, Determine the "Bug Bar"

762

bug bashes, Windows 2000 and the Secure Windows
Initiative, Stage 0: Education and Awareness
bug class, Source-Code Analysis Tool Traps
bug databases, Preparing for the Security Push
bug hunters, Documentation Scrub
bug-tracking software, tracking fields, Build the
Security Leadership Team
bugs

determining the types to be fixed, Determine the
"Bug Bar"
fixing through fuzz testing, Malforming packets
on the fly
found in a security push, Documentation Scrub
marking as reviewed, Threat Models Review
in the response-center tracking database, Security
Response Process
reviewing in a timely manner, Threat Models
Review
source-code analysis tools missing real,
Source-Code Analysis Tool Traps

BugTraq, Security Response Process
Bugtraq mailing list, Take Your Time
Build Requirements class, Ongoing Education
build scripts, Tools-Use Validation
build tools for the old version, Follow Your Plan
business considerations for improved security,
Commitment at Microsoft
business impact, translating technical risk to, Stage
4: Risk Analysis

763

business-critical applications, It’s Really About
Quality
businesses

benefit of secure software development, Enough Is
Enough: The Threats Have Changed
installing updates rapidly, Make Your Product
Updatable
products commonly used or deployed within,
Stage 1: Project Inception

BVCs (Big Visible Charts), Security Push
bytes, exchanging adjacent, Malform a file

764

C

765

C runtime functions

rand, Storing Private Keys and Sensitive Data
sets of replacement, Why the "n" Functions Are
Banned

C runtime library, SDL Banned Function Calls
C# code, Do Not Use Banned Functions
C/C++ code, Use the Latest Compiler and
Supporting Tool Versions, Security Push
C/C++ compilers, Safe Exception Handling:
/SAFESEH, Application Verifier
C4996 compiler warnings, Safe CRT Example
canonicalization failure of data flow, Tampering with
a Data Store
Capability Maturity Model, "Many Eyeballs" Misses
the Point Altogether
Capability Maturity Model Integration (see .)
CAPICOM, Cryptographic Technologies vs.
Low-Level Cryptographic Algorithms
Cathedral and the Bazaar, The, "Given enough
eyeballs, all bugs are shallow"
causing a regression, Creating the fix
CBC (cipher-block-chaining), Symmetric Stream
Ciphers and Key Lengths
CC (Common Criteria), CMMI, TSP, and PSP, First
Steps

766

(see also .)
assurance requirements defined by, Common
Criteria
attacks against software certified by, Common
Criteria
Class EAL4 of, First Steps
evidence provided by, Common Criteria

CD accompanying this book (see .)
cdb debugger, Consume the file and observe the
application
central security team

nominating the Security Advisor from, Determine
Whether the Application Is Covered by SDL
performing the FSR, Stage 9: The Final Security
Review

certification authority, commercial, Make Your
Product Updatable
Certified Information Systems Security Professional
(CISSP), Tracking Attendance and Compliance
chance of attack, determining, Identify Threats to
the System
ChangeServiceConfig2 in Windows Vista, Step 3:
Reduce Privilege
channel

confidentiality, Information Disclosure of a Data
Flow
integrity in data flow, Tampering with a Data
Flow
protecting, Tampering with a Process

767

check-in policies, enforcing coding rules, Secure
Coding and Testing Policies
checked operator in C# code, Do Not Use Banned
Functions
checklists, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
checkv4 tool, checking for IPv4-specific
dependencies, Step 2: Who Needs Access to the
Functionality and from Where?
children, applications targeted at, Privacy Ranking 1
Children’s Online Privacy Protection Act (COPPA),
Determine Whether the Application Is Covered by
SDL, Privacy Ranking 1
chunk length, setting to a bogus value, Malform a file
chunks, formats of, for PNG files, Malform a file
CIA threat taxonomy, Create One or More DFDs of
the Application Being Modeled
cipher-block-chaining (CBC), Symmetric Stream
Ciphers and Key Lengths
circle shape in a DFD, Create One or More DFDs of
the Application Being Modeled
CISSP (Certified Information Systems Security
Professional), Tracking Attendance and Compliance
Class A1 TCSEC evaluation, Your Development
Team Will Make Mistakes
Class C2 TCSEC evaluation, First Steps
Class EAL4 of the Common Criteria, First Steps
cleaning tools, Rules Will Change
client application vs. server application, Identify
Threats to the System
client code bug bar, Malforming packets on the fly

768

client-credential storage, weak, Spoofing an External
Entity or a Process
CLR (common language runtime), Seeking
Scalability: Through Windows XP, Provide
Resources

disabling, Managed Code
AllowPartiallyTrustedCallers Attribute

CMMI (Capability Maturity Model Integration),
"Many Eyeballs" Misses the Point Altogether,
CMMI, TSP, and PSP
code, Stage 6: Secure Coding Policies

769

(see also .)
adding to protect against vulnerable parameters,
Use the Latest Compiler and Supporting Tool
Versions
attackers finding bugs in older, Training
authenticating, Counter the Threat with
Technology
code reviews covering sample, Code Reviews
enabled and disabled during fuzzing, A generic
file-fuzzing process
granting more permission than normal, Elevation
of Privilege
incentive to review, "Given enough eyeballs, all
bugs are shallow"
integrating small updates often, Coding to
Standards
keeping simple and small, Stage 2: Define and
Follow Design Best Practices
lack of motivation to review old, "Many Eyeballs"
Misses the Point Altogether
malicious modification of, Create One or More
DFDs of the Application Being Modeled
minimizing exposure to untrusted users, Attack
Surface Analysis and Attack Surface Reduction
protecting with a digital signature, (4.7.1) Order
Processor Process
reducing running, Managed Code
AllowPartiallyTrustedCallers Attribute
relative cost of fixing defects in, Stage 4: Risk
Analysis

770

requirements adding complexity to, Small
Releases and Iterations
reviewing for bugs, "Given enough eyeballs, all
bugs are shallow"
reviewing security, Security Pushes and Final
Security Reviews
running with enough privilege to get the job done,
Step 2: Who Needs Access to the Functionality
and from Where?
sample following all SDL requirements, Analyzing
the Questionnaire
sample meeting same quality standards as
shipping, Analyzing the Questionnaire
sharing and reuse of, Create Your Response Team
shifting from exclusive focus on quality, Common
Secure-Design Principles
subjecting to automated analysis, Windows 2000
and the Secure Windows Initiative
systematically reviewing older, Refactoring

code listening, serious bug in, Fuzzing Network
Protocols
code paths, reducing to trusted code, Managed Code
AllowPartiallyTrustedCallers Attribute
Code Red Internet worm, Seeking Scalability:
Through Windows XP, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers
code reviews, Training

771

class on performing, Ongoing Education
conducting throughout the development process,
Are We Done Yet?
quality proportional to code size, Incentive to
Review Code
requiring constant and expensive human
attention, Malforming packets on the fly
scaling, Source-Code Analysis Tool Traps
starting, Fixing Bugs Found Through Fuzz
Testing
threat modeling guiding, Stage 4: Risk Analysis
using threat models to aid, (4.7.1) Order
Processor Process

code-level errors, secure designs reducing, Factors
That Affect the Cost of SDL
code-scanning tools under Agile methods, Security
Push
CodeAccessPermission, Tampering with a Process
coding, Stage 6: Secure Coding Policies

772

(see also .)
best practices, Stage 6: Secure Coding Policies,
Risk Analysis
bugs leading to reliability issues, Another Factor
That Influences Security: Reliability
bugs on the boundary of old and new code, Small
Releases and Iterations
insecure techniques, A Short History of Security
Education at Microsoft
policies, Stage 6: Secure Coding Policies
practices, Stage 6: Secure Coding Policies, Risk
Analysis
secure, Risk Analysis
to standards, Coding to Standards
understanding problematic constructs, Benefits of
Source-Code Analysis Tools

coding Agile doctrines, Agile doctrines, Security
Response Execution
Coding the Unit Test First doctrine, Coding to
Standards
college recommendations, offering to researchers,
Managing the security researcher relationship
collisions, Symmetric Stream Ciphers and Key
Lengths

(see also .)
in data flow, Tampering with a Data Flow

color type for a PNG file, Malform a file
COM integration, disabling, Managed Code
AllowPartiallyTrustedCallers Attribute
commitment

773

to the SDL, Is the SDL Necessary for You?
of senior managers to prioritize security, SDL for
Management

Common Criteria (see .)
common language runtime (CLR), Seeking
Scalability: Through Windows XP, Provide
Resources
Common Vulnerabilities and Exposures (see .)
communications

keeping the researcher apprised, Managing the
security researcher relationship
lead for each SSIRP incident, Emergency
Response Process
to the software development team, Documentation
Scrub

community-building events for security researchers,
Managing the security researcher relationship
companion disc with this book

attack-surface rationale document,
Attack-Surface Scrub
The Basics class, A Short History of Security
Education at Microsoft
example header file named banned.h, Do Not Use
Banned Functions
file fuzzer included on, Malform a file
header file named banned.h listing all the banned
APIs, Safe CRT Example
Security Risk Assessment document, Stage 3:
Product Risk Assessment

774

compatibility with data execution prevention,
/NXCOMPAT, Safe Exception Handling: /SAFESEH
competitors

analyzing the security bugs of, Managing the
security researcher relationship
upgrading from applications of, Summary

compiled code, adding stricter argument checking to,
Safe Exception Handling: /SAFESEH
compilers

meeting the minimum SDL requirements under
Agile methods, Security Push
upgraded by Microsoft, Application Verifier
upgrading to add extra defenses to the code, Safe
Exception Handling: /SAFESEH
using defenses added by, Use the Latest Compiler
and Supporting Tool Versions
using the latest, Stage 6: Secure Coding Policies

compiling cleanly using Visual C++, Use the Latest
Compiler and Supporting Tool Versions
complete mediation, Stage 2: Define and Follow
Design Best Practices
complete user stories, Augmenting Agile Methods
with SDL Practices

(see also .)

complex processes, Denial of Service Against a
Process

775

(see also .)
DFD element type, Create One or More DFDs of
the Application Being Modeled
drilling down inside, Create One or More DFDs of
the Application Being Modeled
modeling data flows in and out of, Elevation of
Privilege, Identify Threats to the System

complex software, Common Secure-Design
Principles, Project Inception

(see also .)

complexity, Common Secure-Design Principles

as an enemy of security, Small Releases and
Iterations
methods measuring, Common Secure-Design
Principles

compliance

determining with tools requirements, Tools-Use
Validation
requiring a certain number of points per year for,
Other Compliance Ideas
tracking SDL, Tracking Attendance and
Compliance
ways of measuring, Tracking Attendance and
Compliance

components

modeling inside the trust boundary, What to
Model
widely shared, Support Your Entire Product

776

computers

controlling, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
dedicating a small number to the fuzzing process,
Fixing Bugs Found Through Fuzz Testing
gathering evidence to counter repudiation claims,
Repudiation
increasing speed of, SDL Minimum
Cryptographic Standards

Concurrent Versions System (CVS), Repudiation
confidentiality

mitigation technique against information
disclosure, Plan Mitigations
mitigation technique technologies, Counter the
Threat with Technology
mitigation technique using SSL/TLS, Counter the
Threat with Technology

confidentiality property of CIA, Create One or More
DFDs of the Application Being Modeled
configurations decisions, security implications of,
Stage 5: Creating Security Documents, Tools, and
Best Practices for Customers
connections, ActiveX "Safe for Scripting"

(see also .)
allowing only local by default, Managed Code
AllowPartiallyTrustedCallers Attribute

consistent updating approach, Support All Your
Customers

777

constant testing under Agile methods, Risk Analysis
constraints, Augmenting Agile Methods with SDL
Practices
construction requirements, fixing defects found
during, Stage 4: Risk Analysis
consultants, selling vulnerability information, Where
Do Vulnerability Reports Come From?
consumers, data-store, Information Disclosure of a
Data Store
contact information, Privacy Impact Rating, Follow
Your Plan
contact lists for the MSRC, Create Your Response
Team
content creation by the security response center,
Testing
Content-Length header, Malforming packets on the
fly
context diagram

as the highest-level DFD, Create One or More
DFDs of the Application Being Modeled
for Pet Shop 4.0, Create One or More DFDs of the
Application Being Modeled

Continuing Professional Education (see .)
control messages, falsified, Denial of Service Against
a Data Store
cookie, placing on the stack, Use the Latest Compiler
and Supporting Tool Versions
cooperative relations, building with researchers, Stay
Cool

778

COPPA (Children’s Online Privacy Protection Act),
Determine Whether the Application Is Covered by
SDL, Privacy Ranking 1
counter the threat with technology mitigation
strategy, Determine Risk, Plan Mitigations
countermeasures, Stage 4: Risk Analysis

(see also ; .)

CPE credit program, Tracking Attendance and
Compliance
CPU

increasing speeds of, SDL Minimum
Cryptographic Standards
supporting DEP, Safe Exception Handling:
/SAFESEH

Cracking DES, SDL Minimum Cryptographic
Standards
crashes

coding to avoid, Banned IsBad* Functions and
Replacements
as indications of implementation issues, Fixing
Bugs Found Through Fuzz Testing

CrashOnAuditFail option, Another Factor That
Influences Security: Reliability
CRC, building for each malformed file, Malform a
file
CRC-32, calculated from the data, Malform a file
credential transit, weak, Spoofing an External Entity
or a Process

779

credential-change management, weak, Spoofing an
External Entity or a Process
credentials

equivalence of, Spoofing an External Entity or a
Process
guessing, Spoofing an External Entity or a Process
predictability of, Tampering with a Process

crime, 10:80:10 model of, Enough Is Enough: The
Threats Have Changed

(see also ; .)

criminals

growing interest in software and the Internet,
Rules Will Change
releasing malicious code, Rules Will Change

critical mass, reviewing open source code, Incentive
to Review Code
criticality, mistakes in entering a bug’s, Threat
Models Review
cross-domain security model, Elevation of Privilege
cross-site scripting attacks, New Kinds of
Vulnerabilities Will Appear
Cross-Site Scripting predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
CRT (C runtime library), SDL Banned Function
Calls
CRUD nomenclature, Create One or More DFDs of
the Application Being Modeled

780

CryptDeriveKey in CAPI, Storing Private Keys and
Sensitive Data
CryptGenRandom method, Storing Private Keys and
Sensitive Data
CryptoAPI for C/C++ code, Cryptographic
Technologies vs. Low-Level Cryptographic
Algorithms
cryptographic agility, Cryptographic Technologies
vs. Low-Level Cryptographic Algorithms
cryptographic algorithms

inadequate for current software products, SDL
Minimum Cryptographic Standards
not hard-coding, Cryptographic Agility
replacing weak, Refactoring
usage of, Cryptographic Agility
use mandated by the U.S. federal government,
Cryptographic Agility
using only appropriate, Risk Analysis
using strong by default, Cryptographic Agility

cryptographic code, making more agile, Refactoring
cryptographic key strengths, SDL Minimum
Cryptographic Standards
cryptographic keys, deriving from passwords,
Storing Private Keys and Sensitive Data
cryptographic libraries, Cryptographic Technologies
vs. Low-Level Cryptographic Algorithms
cryptographic primitives

781

creating solutions from, SDL Minimum
Cryptographic Standards
protecting in the data store, Cryptographic
Technologies vs. Low-Level Cryptographic
Algorithms
storing in a configurable store, Cryptographic
Technologies vs. Low-Level Cryptographic
Algorithms

cryptographic requirements and best practices,
high-level, SDL Minimum Cryptographic Standards
cryptographic research

advances in, New Kinds of Vulnerabilities Will
Appear
evolution of, SDL Minimum Cryptographic
Standards

cryptographic services, not available in a Windows
virgin install, Creating Prescriptive Security Best
Practice Documentation
cryptographic standards, SDL Minimum
Cryptographic Standards
cryptographic technologies, SDL Minimum
Cryptographic Standards
Cryptographic Weakness predefined value, Make
Sure the Bug-Tracking Process Includes Security
and Privacy Bug Fields
cryptography, New Kinds of Vulnerabilities Will
Appear
Cryptography by Example class, Ongoing Education
Culp, Scott, First Steps
Custom Exceptions, Malforming packets on the fly

782

customer compromises, avoiding, Attack Surface
Analysis and Attack Surface Reduction
customer data, creating personas from real, Project
Inception
customer issues, building tools based on real,
Creating Tools
Customer Privacy class, Ongoing Education
customer security stories, Security Push
customer testing program at Microsoft, Testing
customer-facing documentation, Risk Analysis
customer-facing documents, plan to create,
Summary
customers

783

alerting about bulletins and updates, Content
creation
all receiving updates at the same time, Update
release
complaining about security vulnerabilities,
Commitment at Microsoft
creating security documents, tools, and best
practices for, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
educating on tradeoffs between risk and product
functionality, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
as key contributors to user stories, Refactoring
leaving some at risk, Update release
probing about security, Refactoring
protecting, Stay Cool
providing detailed security information to, Stage
5: Creating Security Documents, Tools, and Best
Practices for Customers
receiving updates for testing, forbidden from
putting into production, Update release
reducing overall risk to, Privacy Ranking 1
security as an unspoken requirement, Refactoring
staying in control, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
supporting all, Support Your Entire Product
updating process protecting from being
compromised, Stage 5: Creating Security

784

Documents, Tools, and Best Practices for
Customers
upgrading version on short notice, Follow Your
Plan
using products in different ways, Stage 5:
Creating Security Documents, Tools, and Best
Practices for Customers
vulnerabilities reported by, Which Vulnerabilities
Will You Respond To?, Security Response Process

CVE bug categories, Another Factor That Influences
Security: Reliability
CVS (Concurrent Versions System), Repudiation
cybercriminals, Enough Is Enough: The Threats
Have Changed

(see also ; .)
attacks by, Enough Is Enough: The Threats Have
Changed
attacks on applications, Enough Is Enough: The
Threats Have Changed
cost-benefit ratio for, Enough Is Enough: The
Threats Have Changed

cyclomatic complexity, 78cycles in learning from
vulnerabilities, Find the Vulnerabilities Before the
Researchers Do

785

D

786

dagger mark, indicating a specific kind of data store,
Threat Tree Patterns
data

authenticating, Counter the Threat with
Technology
commingled or correlated with PII, Privacy
Impact Rating
hiding, Information Disclosure of a Data Store
malicious modification of, Create One or More
DFDs of the Application Being Modeled
occluded, Information Disclosure of a Data Store
semantically different, Tampering with a Data
Store
traveling from high to low privilege, Create One
or More DFDs of the Application Being Modeled

Data Encryption Standard (see .)
data execution prevention, compatibility with, Safe
Exception Handling: /SAFESEH
Data Execution Protection (DEP), Safe Exception
Handling: /SAFESEH
data flow DFD element type, Create One or More
DFDs of the Application Being Modeled, Threat Tree
Patterns
data flow name, hijacking or squatting, Denial of
Service Against a Data Flow
data flows

787

associated with a verb or verb/noun, Create One
or More DFDs of the Application Being Modeled
denial of service against, Denial of Service Against
a Data Flow
information disclosure of, Information Disclosure
of a Data Flow
protecting, Threat Model Updates
reduction of, Identify Threats to the System
tampering with, Tampering with a Data Flow
in a user story, Risk Analysis

Data Protection API (see .)
data storage, sensitive, Hash Functions
data store DFD element type, Create One or More
DFDs of the Application Being Modeled, Threat Tree
Patterns
data stores

788

access to, Tampering with a Data Store
containing logging or audit data, Identify Threats
to the System
denial of service against, Denial of Service Against
a Data Store
denying access to, Denial of Service Against a
Data Store
information disclosure of, Information Disclosure
of a Data Store
protecting cryptographic primitives in,
Cryptographic Technologies vs. Low-Level
Cryptographic Algorithms
tampering threat to, Counter the Threat with
Technology
tampering with, Tampering with a Data Store
in user stories, Risk Analysis

data structures, code parsing from untrusted
sources, Malforming packets on the fly, Code
Reviews
data-store consumers, Information Disclosure of a
Data Store
database applications, SQL injection vulnerabilities
in, Worlds of Security and Privacy Collide
database interpretation of the TCSEC, First Steps
database servers, physical access to, Pet Shop 4.0
Security Assumptions
databases

building for code reviews, Training
configuring to use native authentication, Pet Shop
4.0 Security Assumptions

789

datagram protocols, enabling by default,
Attack-Surface Scrub
Davidson, Mary Ann, Enough Is Enough: The
Threats Have Changed
days of risk measure, Where Do Vulnerability
Reports Come From?
deadlocks, issues leading to, Application Verifier
debuggers, using symbols, Stage 11: Product Release
debugging

APIs, Malform a file
prerelease code, Unmanaged Compiler Flags
requiring group membership, Managed Code
AllowPartiallyTrustedCallers Attribute
uploading symbols to a central internal site, Stage
11: Product Release

deep code review, Fixing Bugs Found Through Fuzz
Testing
default system-hardening configuration, Define Use
Scenarios
defaults

code running by, Code Reviews
disabling features by, Step 1: Is This Feature
Really That Important?
fail-safe, Stage 2: Define and Follow Design Best
Practices

defect variants, finding within the same code area,
Product Release
defective-code warnings from PREfast, PREfast
defects

790

entering into the code base during refactoring,
Refactoring
relative cost of fixing in code, Stage 4: Risk
Analysis

defense in depth, Make Sure the Bug-Tracking
Process Includes Security and Privacy Bug Fields
defense mechanisms, focusing on extra, Common
Secure-Design Principles
defenses, Determine Risk

(see also .)
added by the compiler, Stage 6: Secure Coding
Policies
not a replacement for good-quality code, Safe
Exception Handling: /SAFESEH
prioritizing, Small Releases and Iterations
users disabling, Common Secure-Design
Principles

defensive code, added by the compiler, Use the Latest
Compiler and Supporting Tool Versions
defensive methods, Security Pushes and Final
Security Reviews
denial of service

against a data flow, Denial of Service Against a
Data Flow
against a data store, Denial of Service Against a
Data Store
against a process, Denial of Service Against a
Process
in customer questions, Risk Analysis

791

Denial of Service predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
denial-of-service attacks (see .)
DEP (Data Execution Protection), Safe Exception
Handling: /SAFESEH
dependencies, relationship with security assumptions
and external security notes, Create External Security
Notes
deprecated functions, Safe CRT automatically
warning of, Using StrSafe
DES (Data Encryption Standard), SDL Minimum
Cryptographic Standards

no longer considered secure, Symmetric Block
Ciphers and Key Lengths
useful knowledge of, Stage 0: Education and
Awareness

design

792

defects not found by tools, Source-Code Analysis
Tool Traps
devising changes to reduce attack surface,
Security Pushes and Final Security Reviews
insecure necessary to support legacy
environments, Pulling It All Together
keeping simple and small, Stage 2: Define and
Follow Design Best Practices
as not existing in most Agile methods, Project
Inception
principles, Ongoing Education
revalidating, Stage 4: Risk Analysis
reviews, Stage 3: Product Risk Assessment
simple in Agile methods, Project Inception
from the viewpoint of security and privacy, Stage
4: Risk Analysis
threat modeling part of, What to Model

design Agile doctrines, Security Response Execution
design and testing concepts for threat trees, Threat
Tree Patterns
design best practices

defining and following, Stage 2: Define and Follow
Design Best Practices
establishing and following, Project Inception

design errors

leading to compromise, A Short History of
Security Education at Microsoft
leading to reliability issues, Another Factor That
Influences Security: Reliability

793

design sprint, DFD as a deliverable from, Project
Inception
destination application code, fuzz code designed to
stress-test, Malforming packets on the fly
destination buffer size, Why the "n" Functions Are
Banned
DESX, no longer considered secure, Symmetric
Block Ciphers and Key Lengths
determine mitigations step, What to Model
developer documentation, Mainline Product Use
Documentation
development

methods of commercial software companies,
"Many Eyeballs" Misses the Point Altogether
minimum versions for tools, Application Verifier
tools required for, SDL-Required Tools and
Compiler Options

development team, Security Pushes and Final
Security Reviews

794

(see also .)
design and threat model reviews with, Holding an
SDL Kick-Off Meeting for the Development Team
finding a vulnerability affecting products close to
shipping, Which Vulnerabilities Will You
Respond To?
focus during the response process, Security
Response Process
holding an SDL kick-off meeting for, Holding an
SDL Kick-Off Meeting for the Development Team
mistakes made by, Stage 10: Security Response
Planning
needing an authoritative list of shipping teams,
Support Your Entire Product
preparing for FSRs, Acting as a Security
Sounding Board for the Development Team
security response and, Resolve phase
setting security policy and communicating status,
Acting as a Security Sounding Board for the
Development Team
support for local languages, Support Your Entire
Product
tracking training attendance for, Factors That
Affect the Cost of SDL

device driver, overwriting with rogue software, More
Attack Surface Elements
DFD element types

determining nature of potential attack, Identify
Threats to the System
mapping STRIDE to, Threat Tree Patterns

795

DFD elements

abbreviated list after reduction, Identify Threats
to the System
applying STRIDE to, Identify Threats to the
System
combining with STRIDE mappings, Identify
Threats to the System
listing all, Elevation of Privilege
mapping to STRIDE threat categories, Threat
Model Updates
modeling as one entity, Identify Threats to the
System
numbering system for, Create One or More DFDs
of the Application Being Modeled

DFD process, Create One or More DFDs of the
Application Being Modeled
DFDs

of the application being modeled, Create One or
More DFDs of the Application Being Modeled
context diagram as the highest-level, Create One
or More DFDs of the Application Being Modeled
as a deliverable from the design sprint, Project
Inception
element types, Create One or More DFDs of the
Application Being Modeled
reviewing during security pushes, Threat Model
Updates
shapes used when building, Create One or More
DFDs of the Application Being Modeled

796

Diffie-Hellman, recommended for key agreement,
Symmetric Stream Ciphers and Key Lengths
Digital Equipment, Windows NT core design team
from, A Short History of the SDL at Microsoft
digital signature, mitigating a process tampering
threat, (4.7.1) Order Processor Process
Directory Traversal predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
dirty stacks, Consume the file and observe the
application
disclosure

irresponsible leading to SSIRP mobilization,
Watch phase
protection from, Threat Model Updates

DivideByZero, Fixing Bugs Found Through Fuzz
Testing
do nothing mitigation strategy, Determine Risk, Plan
Mitigations
documentation

creating prescriptive security best practice, Stage
5: Creating Security Documents, Tools, and Best
Practices for Customers
deriving customer-facing, Risk Analysis
forms of, Creating Prescriptive Security Best
Practice Documentation
inventorying available, Creating Prescriptive
Security Best Practice Documentation
keeping up to date, Preparing for the Security
Push

797

documentation scrub, Attack-Surface Scrub
domain checking, consolidating into a single shared
library, ActiveX "Safe for Scripting"
DoS attacks

against data stores and data flows, Identify
Threats to the System
applications continuing service or nonfunctional
after, Identify Threats to the System

DoS threats, Repudiation

errors leading to, Fixing Bugs Found Through
Fuzz Testing
risk ranking, Determine Risk
using availability, Plan Mitigations

dot releases

handling exception issues in, Handling Exceptions
SDL applying to, Determine Whether the
Application Is Covered by SDL

dotted line shape in a DFD, Create One or More
DFDs of the Application Being Modeled
double circle shape in a DFD, Create One or More
DFDs of the Application Being Modeled
DPAPI (Data Protection API)

protecting keys, secret data, and passwords, Hash
Functions
protecting sensitive connection strings and
encryption keys, Pet Shop 4.0 Security
Assumptions
storing encryption keys, Define Use Scenarios

798

draft documentation, reviewing to verify security
best practices, Attack-Surface Scrub
DREAD ratings, calculating risk, Identify Threats to
the System
Driver Verifier in Microsoft Windows, Penetration
Testing
DSA-based digital signatures, Symmetric Stream
Ciphers and Key Lengths
dumb fuzzing, A generic file-fuzzing process,
Malform a file
duty officers

beginning the response process, Security Response
Process
pairing with product teams, Managing the
security researcher relationship
staffing the response center, Security Response
Process

DVD with this book (see .)

799

E

800

e-commerce applications

as high-risk, A Challenge to Large ISVs
needing auditing facilities, Create One or More
DFDs of the Application Being Modeled
non-repudiation important for, Repudiation
security critical for, Commitment at Microsoft

e-mail alias, Take Your Time
e-mail messages

from push leadership to the development team,
Documentation Scrub
reading prohibited in Pet Shop 4.0, Pet Shop 4.0
Security Assumptions

e-mail notification, released to subscribers of security
bulletins, Content creation
EALs (Evaluation Assurance Levels), Common
Criteria
ECB (electronic code book) mode, Symmetric
Stream Ciphers and Key Lengths
ECC (elliptic curve cryptography), Symmetric
Stream Ciphers and Key Lengths
Economy of Mechanism, Common Secure-Design
Principles
education (see .)
electronic code book (ECB) mode, Symmetric
Stream Ciphers and Key Lengths
elevation of privilege (see .)
Elevation of Privilege predefined value, Make Sure
the Bug-Tracking Process Includes Security and
Privacy Bug Fields

801

elliptic curve cryptography (ECC), Symmetric
Stream Ciphers and Key Lengths
emergency lead for each SSIRP incident, Emergency
Response Process
emergency response process, Update release, Take
Your Time
emergency situations, justifying exceptions to
principles of predictability and simultaneity, Update
release
encryption

of data, Information Disclosure of a Data Store
solving a confidentiality problem through,
Counter the Threat with Technology

encryption algorithms

removing older, New Kinds of Vulnerabilities Will
Appear
strength of, Cryptographic Technologies vs.
Low-Level Cryptographic Algorithms

encryption keys

code handling, Code Reviews
relying on the underlying operating system,
Define Use Scenarios

end-user content, produced by MSRC, Testing
end-user documentation, including sidebars or
security notes, Mainline Product Use Documentation
engineering lead for each SSIRP incident,
Emergency Response Process
engineering staff, providing prescriptive guidance to,
Stage 2: Define and Follow Design Best Practices

802

engineering team

nominating the Security Advisor from, Determine
Whether the Application Is Covered by SDL
vulnerabilities discovered by, Which
Vulnerabilities Will You Respond To?

engineers (see .)
entry points, Attack-Surface Scrub

(see also .)
building fuzz tests for all, Secure Coding and
Testing Policies
listing to a system, (4.7.1) Order Processor
Process
reviewing, Threat Model Updates

EoP (elevation-of-privilege), Denial of Service
Against a Data Store

errors leading to, Fixing Bugs Found Through
Fuzz Testing

EoP (elevation-of-privilege) threats, Repudiation

mitigation for, (4.7.1) Order Processor Process
risk ranking, Determine Risk
using authorization, Plan Mitigations

error reports, providing clues, Take Your Time
errors, applying practices eliminating or detecting,
Your Development Team Will Make Mistakes
estimation (see .)
European Information Technology Security
Evaluation Criteria (ITSEC), First Steps

803

Evaluation Assurance Levels (EALs), Common
Criteria
Excel PivotTable, creating for a code review, Code
Reviews
Excellent (4) rating for a threat model, Summary
exception handlers

adding extra information, Use the Latest
Compiler and Supporting Tool Versions
calling vs. hijacked (overwritten), Use the Latest
Compiler and Supporting Tool Versions

exceptions

catching all, Banned IsBad* Functions and
Replacements
deciding whether to allow, Handling Exceptions
detecting first-chance, Application Verifier
handling after the FSR, Tools-Use Validation

Exchange 2000 Server Service Pack 3, improved
security for, Security Pushes and Final Security
Reviews
Exchange Server 2000, securing, Mainline Product
Use Documentation
Exchange Server 2003

evaluation at Class EAL4 of the Common
Criteria, First Steps
reduced attack surface in, Managed Code
AllowPartiallyTrustedCallers Attribute

exclusive OR (XOR) operation with all bits in a byte,
Malform a file

804

executable components, signing off on all high-risk,
Code Reviews
executable files, assigning test owners, Code Reviews
executable image, adding only safe exceptions to, Use
the Latest Compiler and Supporting Tool Versions
executable-file owners, Code Reviews
executive support

as the key factor in making SDL successful,
Commitment at Microsoft
of SDL, Stage 0: Education and Awareness
for security awareness and education,
Implementing Your Own In-House Training

executives, Is the SDL Necessary for You?

(see also .)
commitment to delaying products to improve
security, Commitment at Microsoft
commitment to the SDL process, Commitment at
Microsoft
communicating the importance of security, Be
Visible
involving in the process of allowing exceptions,
Handling Exceptions

exercises, adding to classes, Types of Training
Delivery
exit criteria for the security push, Preparing for the
Security Push
experienced presenters for security training, Key
Success Factors and Metrics
exploit code, Preparing to Respond

805

released by security researchers, First Steps
releasing against vulnerable systems, Which
Vulnerabilities Will You Respond To?
using as a test case, Consume the file and observe
the application

Exploit Development class, Ongoing Education
exploitable coding constructs or designs, Do Not Use
Banned Functions
exploitable heap-based buffer overruns, Your
Development Team Will Make Mistakes
exploitation

noticing, Take Your Time
proactive detecting, Take Your Time

external dependencies

gathered during the threat modeling process,
Stage 4: Risk Analysis
gathering a list of, Define Use Scenarios

external entities

spoofing, Spoofing an External Entity or a Process
users as, Risk Analysis

external entity DFD element type, Create One or
More DFDs of the Application Being Modeled,
Threat Tree Patterns
external process, spoofing, Spoofing an External
Entity or a Process
external security information for Pet Shop 4.0, Pet
Shop 4.0 Security Assumptions
external security notes

806

creating, Create External Security Notes
gathered during the threat modeling process,
Stage 4: Risk Analysis
relationship with security assumptions and
dependencies, Create External Security Notes

external users, testing by, Testing
Extreme Programming (XP), CMMI, TSP, and PSP,
Integrating SDL with Agile Methods

mandating writing a test for a bug, Secure Coding
and Testing Policies
notion of moving people around, Project Inception
refactoring in, Secure Coding and Testing Policies

807

F

808

fail-safe defaults, Stage 2: Define and Follow Design
Best Practices
fallback, weak algorithms as, Cryptographic Agility
false positives

mistaking for real bugs, Source-Code Analysis
Tool Traps
net effect of too many, Source-Code Analysis Tool
Traps

fault injection in AppVerif, Consume the file and
observe the application
features, Stage 0: Education and Awareness

809

(see also .)
cheaper to remove than fix, Factors That Affect
the Cost of SDL
determining a need for, Step 1: Is This Feature
Really That Important?
disabling by default, Factors That Affect the Cost
of SDL, Step 1: Is This Feature Really That
Important?
reducing in SQL Server 2005, Managed Code
AllowPartiallyTrustedCallers Attribute
removing as a mitigation strategy, Plan
Mitigations
removing insecure from products, Provide
Resources
reviewing riskiest first, Security Push
running by default vs. not, ActiveX "Safe for
Scripting"
security ramifications of enabling other, Mainline
Product Use Documentation
turning off, Step 1: Is This Feature Really That
Important?, Plan Mitigations

fielded software, Preparing to Respond
file data, handing off to a platform API, A generic
file-fuzzing process
file format filters, not installing, Managed Code
AllowPartiallyTrustedCallers Attribute
file format parsers, Fuzz Testing
file formats

fuzzing, Fuzz Testing
identifying all valid, A generic file-fuzzing process

810

file fuzzing

broad classes of, A generic file-fuzzing process
generic process, Fuzz Testing

file owners in the code review database, Training
file types

collecting 100 of each supported, A generic
file-fuzzing process
hard to fuzz, A generic file-fuzzing process

files

collecting a library of valid, A generic file-fuzzing
process
consuming, Malform a file
filling with random data, Malform a file
making smaller than normal, Malform a file
malforming, A generic file-fuzzing process
process for fuzzing, Fuzz Testing

Final Security Reviews (see .)
financial gain, targeted attacks focused on, Is the
SDL Necessary for You?
financial information, data containing, Privacy
Impact Rating
Fingerprint Reader, Mainline Product Use
Documentation
fire and forget protocol, UDP as, More Attack
Surface Elements
Firefox/Mozilla Chrome UI DOM Property Override
Privilege Escalation (CVE-2005-1160), Elevation of
Privilege

811

firewall administrators, information of use to,
Creating Prescriptive Security Best Practice
Documentation
firewall rule, enabling as a workaround, Product
Release
firewalls

adding another layer of defense to supplement,
Step 2: Who Needs Access to the Functionality
and from Where?
installed on individual computers, Managed Code
AllowPartiallyTrustedCallers Attribute
turning off in response to an application problem,
Step 2: Who Needs Access to the Functionality
and from Where?
turning on by default, Managed Code
AllowPartiallyTrustedCallers Attribute

First 4 Internet, DRM software written by, More
Attack Surface Elements
first responders, executing the Watch phase, Watch
phase
first-chance exceptions and handle checking,
enabling, Consume the file and observe the
application
fix development, building a regression-free fix,
Creating the fix
fixes

812

commonly rolled into big updates or dot releases,
Which Vulnerabilities Will You Respond To?
creating, Creating the fix
critical aspects of, Creating the fix
fundamental mistake in designing, Creating the
fix
making, Secure Coding and Testing Policies
for multiple product versions and locales,
Creating the fix
obscuring by releasing in a service pack or new
version, Which Vulnerabilities Will You Respond
To?
regressions and, Creating the fix
releasing for all languages at the same time,
Support Your Entire Product
taking the time to build quality, Stay Cool

follow-up, demonstrating commitment, Is the SDL
Necessary for You?
formats, requiring methodical fuzzing, Malforming
packets on the fly
Forum of Incident Response and Security Teams,
Take Your Time
fraud, PII data facilitating, Privacy Impact Rating
FSRs (Final Security Reviews), Security Pushes and
Final Security Reviews, Stage 9: The Final Security
Review

813

breaking into small feature FSRs, Security Push
class on, Ongoing Education
component or entire product failing, Provide
Resources
evaluating failed, Stage 9: The Final Security
Review
major tasks required when performing, Stage 9:
The Final Security Review
minimum set of requirements using Agile
methods, Security Push
preparing the development team for, Acting as a
Security Sounding Board for the Development
Team
remediating issues after, Tools-Use Validation
surprises during, Stage 11: Product Release

Full-Disclosure, Security Response Process, Take
Your Time
function calls

banned SDL, SDL Banned Function Calls
intercepting from the application under test,
Application Verifier

functionality

814

determining who needs to access and from where,
Step 2: Who Needs Access to the Functionality
and from Where?
need for access and from where, Step 2: Who
Needs Access to the Functionality and from
Where?
not adding earlier than needed, Small Releases
and Iterations
turning off as a workaround, Product Release

functions

naming, The Banned APIs
not using banned, Benefits of Source-Code
Analysis Tools

fundamental resource consumption, Denial of
Service Against a Process
fuzz testing, Stage 7: Secure Testing Policies

for all parsed data formats, Security Push
fixing bugs found through, Malforming packets
on the fly
hitting a large number of bugs, Fixing Bugs
Found Through Fuzz Testing
lending itself well to Agile methods, Secure
Coding and Testing Policies

Fuzz Testing in Depth class, A Short History of
Security Education at Microsoft
fuzz testing requirements, Stage 3: Product Risk
Assessment
fuzzed HTTP packets, replaying, Create bogus
packets

815

fuzzers, building for complex protocols, Create bogus
packets
fuzzing, Fuzz Testing

disabling code before shipping software to
customers, Malforming packets on the fly
enabling and disabling code during, A generic
file-fuzzing process
file formats, Fuzz Testing
files, Fuzz Testing
miscellaneous, Malforming packets on the fly
network protocols, Fuzzing Network Protocols
order of network operations, Fuzz Testing
performing on a private subnet, Fuzzing Network
Protocols
ways to smart or dumb fuzz, Malform a file

fuzzing tool, setting to be a mini-debugger, xx,
Malform a file
FxCop, Benefits of Source-Code Analysis Tools,
SDL-Required Tools and Compiler Options, FxCop

security rules, FxCop
in Visual Studio 2005, FxCop

816

G

817

Garms, Jason, First Steps
Gates, Bill

commitment to SDL, Stage 0: Education and
Awareness
e-mail committing Microsoft to Trustworthy
Computing, Commitment at Microsoft, Is the
SDL Necessary for You?
launching of Trustworthy Computing, Seeking
Scalability: Through Windows XP
Trustworthy Computing memo, A Short History
of Security Education at Microsoft

generic file-fuzzing process, Fuzz Testing
GetRandom method, Storing Private Keys and
Sensitive Data
gets functions, list of banned with replacements,
Banned String Tokenizing Functions and
Replacements
GetTickCount function, Storing Private Keys and
Sensitive Data
giblets, vulnerabilities in, Create Your Response
Team
Given enough eyeballs, all bugs are shallow concept,
"Given enough eyeballs, all bugs are shallow"
global variables, compared to local variables,
Common Secure-Design Principles
Good (3) rating for a threat model, Summary
good security hygiene, Threat Model Updates
Google Desktop version 3 beta, Worlds of Security
and Privacy Collide

818

government contractors, applications developed by,
Commitment at Microsoft
graphic images, code manipulating, Fuzz Testing
Graphics::DrawImage, handing file data off to, A
generic file-fuzzing process
group membership

Administrators as the most dangerous, Step 3:
Reduce Privilege
associated with an account, Step 2: Who Needs
Access to the Functionality and from Where?

/GS flag, Use the Latest Compiler and Supporting
Tool Versions

compiling all unmanaged code with, Unmanaged
Compiler Flags
under Agile methods, Security Push

Guidelines for Writing RFC Text on Security
Considerations, Stage 2: Define and Follow Design
Best Practices

819

H

820

Hailstorm tool, Create bogus packets
Halstead’s complexity, Common Secure-Design
Principles
handles, detecting erroneous use of, Application
Verifier
hash algorithms, Symmetric Block Ciphers and Key
Lengths
hash collisions, Symmetric Stream Ciphers and Key
Lengths

(see also .)
demonstrated for both MD4 and MD5, Symmetric
Stream Ciphers and Key Lengths

hash function agility, Hash Functions
hash functions, Symmetric Stream Ciphers and Key
Lengths
Hashed Message Authentication Codes (see .)
header fields, changing in HTTP, Malforming
packets on the fly
headers

adding in code to use StrSafe, Why the "n"
Functions Are Banned
adding invalid to HTTP, Malforming packets on
the fly
duplicating valid in HTTP, Malforming packets
on the fly

heap checking, enabling during fuzz testing,
Consume the file and observe the application
heap overruns and underruns, Application Verifier

821

heap-based memory leaks and overwrites, caught by
AppVerif, Consume the file and observe the
application
help documentation, Mainline Product Use
Documentation
heuristics, adding to determine bug probability,
Source-Code Analysis Tool Traps
hiding data, Information Disclosure of a Data Store
high bits, toggling, setting, or clearing, Malform a file
high privilege, data traveling from to low, Create
One or More DFDs of the Application Being
Modeled
high-level protocols, mitigating threats, Counter the
Threat with Technology
highest-risk code, reviewing the most thoroughly,
Attack-Surface Scrub
highest-risk items, addressing first, Determine Risk
hijacking, a data flow name, Denial of Service
Against a Data Flow
HMAC algorithms, Symmetric Block Ciphers and
Key Lengths, Hash Functions
home users, installing updates automatically, Make
Your Product Updatable
hosting URL, fuzzing, Malforming packets on the fly
HTML content, changing, Malforming packets on
the fly
HTML page, instantiating for mobile code,
Malforming packets on the fly
HTTP GET requests, Managed Code
AllowPartiallyTrustedCallers Attribute
HTTP packets

822

collecting, Create bogus packets
fuzzers in a recorded file, Create bogus packets
replaying fuzzed, Create bogus packets
requiring methodical fuzzing, Malforming packets
on the fly

HTTP response splitting, New Kinds of
Vulnerabilities Will Appear
HTTP Response Splitting attack, Incentive to Review
Code
HTTPd process, first starting up as root, Step 3:
Reduce Privilege

823

I

824

identity theft, PII data facilitating, Privacy Impact
Rating
IETF (Internet Engineering Task Force), Stage 2:
Define and Follow Design Best Practices
IHDR chunk

building a file with more than one, Malform a file
building a PNG file with no, Malform a file
following the signature in a PNG file, Malform a
file
format of, Malform a file

IIS 4 as the most compromised Web server on the
Internet, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
IIS 5

as the most compromised Web server on the
Internet, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
Pescatore’s criticism of, It’s Really About Quality

IIS 6

825

enforcing authentication, Pet Shop 4.0 Security
Assumptions
fewer security bugs than IIS, Enough Is Enough:
The Threats Have Changed, "Many Eyeballs"
Misses the Point Altogether
as a great example of micro-ASR, Step 1: Is This
Feature Really That Important?
main administrative service runs as SYSTEM,
Step 3: Reduce Privilege
not installed by default in Microsoft Windows
Server 2003, Step 1: Is This Feature Really That
Important?

IIS Lockdown tool, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers,
Creating Tools
IIS Lockdown Wizard, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers
IIS Security Checklist, for IIS 4, IIS 5, and IIS 5.1,
Stage 5: Creating Security Documents, Tools, and
Best Practices for Customers
IIS servers, dramatic reduction in compromised,
Stage 5: Creating Security Documents, Tools, and
Best Practices for Customers
IIS Web extensions, prohibiting unnecessary,
Creating Tools
IMAP, turning off by default, Managed Code
AllowPartiallyTrustedCallers Attribute
Implementing Threat Mitigations class, Ongoing
Education
in-house developers, benefits of SDL for, A
Challenge to Large ISVs

826

in-house training, implementing, Other Compliance
Ideas
incident response process (see .)
incidents, evaluating, Watch phase
Incorrect/No Error Messages predefined value,
Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields
Incorrect/No Pathname Canonicalization predefined
value, Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields
independent security consultants, Where Do
Vulnerability Reports Come From?
independent software vendors (ISVs), A Challenge to
Large ISVs
Ineffective Secret Hiding predefined value, Make
Sure the Bug-Tracking Process Includes Security
and Privacy Bug Fields
information disclosure

in customer questions, Risk Analysis
of a data flow, Information Disclosure of a Data
Flow, Information Disclosure of a Data Store
of a process, Information Disclosure of a Process

Information Disclosure (Privacy) predefined value,
Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields
Information Disclosure predefined value, Make Sure
the Bug-Tracking Process Includes Security and
Privacy Bug Fields
information disclosure threats, Repudiation

827

confidentiality mitigation technique, Counter the
Threat with Technology
as a privacy issue, Worlds of Security and Privacy
Collide, Make Sure the Bug-Tracking Process
Includes Security and Privacy Bug Fields
risk ranking, Determine Risk
using confidentiality, Plan Mitigations

Information Radiators (see .)
Information Technology Information Sharing and
Analysis Center, Take Your Time
Information Technology Security Evaluation
Criteria (ITSEC), First Steps
information, independent sources of, Knowing What
to Skip
initial update, addressing obvious or critical
vulnerabilities, Be Able to Install an Update
initialization, provided by an installer, Be Able to
Install an Update
input validation, Tampering with a Process, Denial
of Service Against a Process
insecure advice, removing from a user manual,
Mainline Product Use Documentation
insecure design, necessary to support legacy
environments, Pulling It All Together
insecurity, caused by interaction between two
components, What to Model
insider-threat scenario, Building the Threat Model
installers

828

compensating for the absence of, Be Able to
Install an Update
at Microsoft, Support All Your Customers
releasing an update with, Be Able to Install an
Update

instant messaging applications, prohibited in Pet
Shop 4.0, Pet Shop 4.0 Security Assumptions
integer arithmetic

overflow check, Do Not Use Banned Functions
replacing with safer code, Refactoring

integer overflow attacks on length calculations, Your
Development Team Will Make Mistakes
Integer Overflow error, Malforming packets on the
fly
integrated process, SDL as, SDL for Management
integrity

mitigation technique against tampering, Plan
Mitigations
mitigation technique technologies, Counter the
Threat with Technology
technologies mitigating tampering threats,
Counter the Threat with Technology
verification, Make Your Product Updatable

integrity property of CIA, Create One or More DFDs
of the Application Being Modeled
interactor DFD element type, Create One or More
DFDs of the Application Being Modeled
internal security notes, tracking, Stage 4: Risk
Analysis

829

internal security team, discovering a new class of
vulnerability, Provide Resources
internal state, defending against corruption of,
Tampering with a Process
Internet

browsing prohibited in Pet Shop 4.0, Pet Shop 4.0
Security Assumptions
code listening on or connecting to, Code Reviews
evolving threat environment of, First Steps
explosive growth of, First Steps
products regularly touching or listening on,
Determine Whether the Application Is Covered
by SDL
software regularly used to connect to, Security
Pushes and Final Security Reviews

Internet Access RADIUS Service, Integrating SDL
with Agile Methods
Internet access vs. subnet, link-local, or site-local
access, Managed Code AllowPartiallyTrustedCallers
Attribute
Internet Engineering Task Force (IETF), Stage 2:
Define and Follow Design Best Practices
Internet Explorer

early discoveries of vulnerabilities in, First Steps
number of versions supported, Support All Your
Customers
significant security work needed, Security Pushes
and Final Security Reviews
SWI team locking down, Security Pushes and
Final Security Reviews

830

Internet Explorer 7, improving security in, Security
Pushes and Final Security Reviews
Internet-based pet store application (see .)
internships, offering to researchers, 200Internet
Information Services (see .)
intranet site with live statistics on the security push,
Documentation Scrub
Intrinsa, PREfix-related technology, Windows 2000
and the Secure Windows Initiative
Introduction to the SDL and Final Security Review
(FSR) Process class, Ongoing Education
intrusion-detection logs, Take Your Time
intrusion-detection vendors, Watch phase
invalid headers, adding to HTTP, Malforming
packets on the fly
IP addresses

analyzing, Step 2: Who Needs Access to the
Functionality and from Where?
easily spoofed under UDP, More Attack Surface
Elements

IPAddress.IsLoopback function, Step 2: Who Needs
Access to the Functionality and from Where?
IPv4 addresses, parsing, Step 2: Who Needs Access
to the Functionality and from Where?
IPv6 addresses, parsing, Step 2: Who Needs Access
to the Functionality and from Where?
IPv6 networks, defaulting to site-local or link-level,
Step 2: Who Needs Access to the Functionality and
from Where?

831

irresponsible disclosure, leading to SSIRP
mobilization, Watch phase
ISA Server 2004

checklists, guides, and how-to articles for
securing, Mainline Product Use Documentation
evaluation at Class EAL4 of the Common
Criteria, First Steps

ISAPI filter, Code Red Internet worm running,
Seeking Scalability: Through Windows XP
IsBad* functions, list of banned, Banned IsBad*
Functions and Replacements
ISC, CPE credit program, Tracking Attendance and
Compliance
ISO Standard 15408, CMMI, TSP, and PSP

(see also .)

ISVs (independent software vendors), A Challenge to
Large ISVs
IT professionals, content for, Testing
iterations in Agile development, Project Inception
ITS4, report on strcpy, Source-Code Analysis Tool
Traps
ITSEC (Information Technology Security Evaluation
Criteria), First Steps

832

J
Java Web Start Untrusted Application Privilege
Escalation (CVE-2005-1974), Elevation of Privilege
JavaScript, fuzzing methods and properties owned
by mobile code, Malforming packets on the fly
job objects, Malform a file

K
KDF (key derivation function), Storing Private Keys
and Sensitive Data
Kerchoff’s Law, Stage 2: Define and Follow Design
Best Practices
kernel source code, compromise of, Repudiation
kernel-mode code, Create One or More DFDs of the
Application Being Modeled
key lengths

asymmetric algorithms, Symmetric Stream
Ciphers and Key Lengths
symmetric block ciphers, Symmetric Block
Ciphers and Key Lengths
symmetric stream ciphers, Symmetric Block
Ciphers and Key Lengths

key-distribution-center storage, weak, Spoofing an
External Entity or a Process
keyboard clicks, analyzing in real time, Stage 4: Risk
Analysis
Kiviharju, Mikko, Mainline Product Use
Documentation
knowledge, measuring, Other Compliance Ideas

833

L

834

labs, adding to classes, Types of Training Delivery
language versions, software available in multiple,
Creating the fix
law-enforcement agency, inquiry from, Take Your
Time
leaking memory warning in PREfast, FxCop
learning from mistakes under Agile methods,
Security Response Execution
least common mechanism, Common Secure-Design
Principles
least privilege, Common Secure-Design Principles,
Step 3: Reduce Privilege, Managed Code
AllowPartiallyTrustedCallers Attribute
legacy code

applying SDL to, Stop Products
cleanup work in Scrum, Secure Coding and
Testing Policies
cost of SDL for products with, Factors That Affect
the Cost of SDL
reviewing in a series of refactoring spikes, Secure
Coding and Testing Policies
security push focusing primarily on, Stage 7:
Secure Testing Policies
targeting in the security push, Stage 8: The
Security Push

legacy environments, Pulling It All Together
lessons learned

for each SSIRP incident, Resolve phase
process, Update release

835

level-0 DFD

creating, Create One or More DFDs of the
Application Being Modeled
for Pet Shop 4.0, Create One or More DFDs of the
Application Being Modeled

level-1 DFD, for order processing within Pet Shop
4.0, Create One or More DFDs of the Application
Being Modeled
levity, adding to the security push, Documentation
Scrub
library of valid files, A generic file-fuzzing process
LibTIFF library, A generic file-fuzzing process
License Server, lstrcpy function, SDL Banned
Function Calls
line-of-business applications, Commitment at
Microsoft
link-local access vs. local machine access, Managed
Code AllowPartiallyTrustedCallers Attribute
Linker (link.exe), minimum and recommended
version of, Application Verifier
Linux

no equivalent to DPAPI, Define Use Scenarios
POSIX capabilities in some versions of, Step 2:
Who Needs Access to the Functionality and from
Where?

Lipner, Steve, First Steps
live training

compared to online, Types of Training Delivery
limitations of, Ongoing Education

836

local accessibility vs. remote, Identify Threats to the
System
local administrator only check in RPC code, Step 2:
Who Needs Access to the Functionality and from
Where?
local languages, support for, Support Your Entire
Product
local machine

access, Managed Code
AllowPartiallyTrustedCallers Attribute
defaulting to, Step 2: Who Needs Access to the
Functionality and from Where?

local privilege-elevation bug, More Attack Surface
Elements
Local Service in place of Local System, Step 3:
Reduce Privilege
local subnet, defaulting to, Step 2: Who Needs Access
to the Functionality and from Where?
Local System

processes running in, Step 2: Who Needs Access to
the Functionality and from Where?
running code, Managed Code
AllowPartiallyTrustedCallers Attribute
running Windows services as, Step 3: Reduce
Privilege

local variables, as more robust and maintainable,
Common Secure-Design Principles
localization support, improving, Support Your
Entire Product

837

lock usage, Consume the file and observe the
application
locking down

an IIS server, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
software, Creating Prescriptive Security Best
Practice Documentation

log files, Another Factor That Influences Security:
Reliability

(see also .)
reading from AppVerif, Consume the file and
observe the application
writing failure information to, Malform a file
writing to, Repudiation

logging, determining an appropriate level of,
Repudiation
low privilege, data moving to a higher privilege,
Create One or More DFDs of the Application Being
Modeled
low-trust users, consuming application-specific
resources, Denial of Service Against a Process
lstrcpy function, SDL Banned Function Calls
luring attack, mounting, Tampering with a Process

838

M

839

MAC key length, Symmetric Block Ciphers and Key
Lengths
machine-to-machine boundaries, Create One or
More DFDs of the Application Being Modeled
macros, running by default, Managed Code
AllowPartiallyTrustedCallers Attribute
mailing lists, Security Response Process, Take Your
Time
mainline product use documentation, Creating
Prescriptive Security Best Practice Documentation
makefiles, Tools-Use Validation
makepath functions, list of banned with
replacements, Banned String Tokenizing Functions
and Replacements
malformed files

keeping all that cause an application to fail,
Consume the file and observe the application
testing 100,000, Fuzz Testing

malformed input tests, performing, Application
Verifier
malformed packets, dropping on the network,
Fuzzing Network Protocols
malforming

files, A generic file-fuzzing process
packets on the fly, Create bogus packets

malforming process, file fuzzer demonstrating,
Malform a file
malicious attackers, vulnerabilities found by, Which
Vulnerabilities Will You Respond To?

840

malicious parties, conducting vulnerability research,
Where Do Vulnerability Reports Come From?
malicious Web sites, Web pages calling mobile code,
ActiveX "Safe for Scripting"
malicious-code cleaning tool, Resolve phase
malware, Preparing to Respond
man-in-the-middle attack (MITM), Create bogus
packets, Information Disclosure of a Data Flow
managed code

applying SDL to languages producing, Factors
That Affect the Cost of SDL
evaluating results from tools, Security Push
security issues specific to, FxCop

management commitment

demonstrating by providing resources, Be Visible
to SDL, SDL for Management
to security, Windows 2000 and the Secure
Windows Initiative

management process, running with elevated
privileges, Step 3: Reduce Privilege
managers, Is the SDL Necessary for You?

(see also ; .)
actions supporting SDL, Is the SDL Necessary for
You?
SDL and, SDL for Management
understanding security problems, Commitment at
Microsoft

many eyes concept

841

as leading to secure code, "Many Eyeballs"
Misses the Point Altogether
not leading to secure software, "Many Eyeballs"
Misses the Point Altogether

Mb (monetary benefit for the attacker), Enough Is
Enough: The Threats Have Changed
McCabe’s cyclomatic complexity, Common
Secure-Design Principles
MD4 hash algorithm, Symmetric Stream Ciphers
and Key Lengths
MD5 hash algorithm, Symmetric Stream Ciphers
and Key Lengths
mechanism, economy of, Stage 2: Define and Follow
Design Best Practices
mediation, complete, Stage 2: Define and Follow
Design Best Practices
medical history, data containing, Privacy Impact
Rating
memory

accessing, Tampering with a Process
allocations, Malforming packets on the fly, Fixing
Bugs Found Through Fuzz Testing
dump, Privacy Impact Rating
leak, Consume the file and observe the application
usage increased over time, Consume the file and
observe the application

memset, filling the destination buffer, Banned IsBad*
Functions and Replacements
message

842

confidentiality, Information Disclosure of a Data
Flow
in a data flow, Tampering with a Process
integrity in data flow, Tampering with a Data
Flow
protecting, Tampering with a Process

Message Authentication Codes (MACs), Counter the
Threat with Technology, Hash Functions
methods, fuzzing systematically, Malforming packets
on the fly
micro-features, separate code paths of, Step 1: Is
This Feature Really That Important?
Microsoft

843

allocating the cost of a team to a product, Stop
Products
attack surface reduction in products, Managed
Code AllowPartiallyTrustedCallers Attribute
bug bar created by, Identify Threats to the System
business benefit of secure software development,
Enough Is Enough: The Threats Have Changed
criticism about insecurity of products, It’s Really
About Quality
dealing with the new Internet realities, First Steps
history of SDL at, A Short History of the SDL at
Microsoft
history of security education at, Stage 0:
Education and Awareness
leading effectively at, Commitment at Microsoft
management commitment to SDL, SDL for
Management
mobilizing resources quickly to assess the
potential threat and take action, Emergency
Response Process
ongoing security education, A Short History of
Security Education at Microsoft
SDL-related culture change, Commitment at
Microsoft
security bugs found through fuzzing, Fuzz Testing
security pushes across, Security Pushes and Final
Security Reviews
Security Response Team, First Steps
Security Task Force formed by, New Threats,
New Responses

844

source-code analysis tools from, Benefits of
Source-Code Analysis Tools
updating when updates are available to
customers, Update release

Microsoft Developer Network (see .)
Microsoft Fingerprint Reader, Mainline Product Use
Documentation
Microsoft Interface Definition Language compiler
(see .)
Microsoft Office 2003 (see .)
Microsoft Office Outlook E-Mail Security Update,
Rules Will Change
Microsoft Press support, Bibliography
Microsoft Research

partnership with the SWI team, Windows 2000
and the Secure Windows Initiative
Programmer Productivity Research Center,
Windows 2000 and the Secure Windows Initiative

Microsoft Security Bulletin

845

MS01-017, Make Your Product Updatable
MS02-039, SDL Banned Function Calls
MS03-026, Creating the fix
MS03-039, Creating the fix
MS03-045, SDL Banned Function Calls
MS04-007, New Kinds of Vulnerabilities Will
Appear
MS04-011, SDL Banned Function Calls
MS04-012, Creating the fix
MS04-026, Incentive to Review Code
MS04-031, SDL Banned Function Calls
MS05-010, SDL Banned Function Calls
MS06-001, Update release

Microsoft security bulletins, involving banned APIs,
SDL Banned Function Calls
Microsoft Security Response Center (see .)
Microsoft Solutions Framework (see .)
Microsoft SQL Server 2000 (see .)
Microsoft Trustworthy Computing Academic
Advisory Board, Stage 4: Risk Analysis
Microsoft Update Web site, Support All Your
Customers
Microsoft Visual Basic (vbc.exe), minimum and
recommended version of, Application Verifier
Microsoft Visual C# compiler (csc.exe), minimum
and recommended version of, Application Verifier
Microsoft Visual Studio (see .)
Microsoft Windows (see .)
Microsoft Windows division (see .)
Microsoft Windows Server 2003 (see .)
Microsoft Windows Vista (see .)

846

Microsoft Windows XP (see .)
MIDL (Microsoft Interface Definition Language)
compiler

building RPC and COM code, Safe Exception
Handling: /SAFESEH
using /ROBUST, Tools-Use Validation

MIME-handler, A generic file-fuzzing process
MiniFuzz file fuzzer, What’s on the Companion
Disc?
MiniFuzz, as a mini-debugger, Malform a file
minimum-security bar, Use a Secure Coding
Checklist
mismanagement, impact of, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
mistakes

learning from, Update release
made by the development team, Stage 10: Security
Response Planning

mitigation techniques

attacks of, Using a Threat Model to Aid Code
Review
based on STRIDE threat type, Plan Mitigations

mitigations, Determine Risk

847

(see also ; .)
building into the design of an application, (4.7.1)
Order Processor Process
identifying, What to Model
included in security bulletins, Testing
planning, Determine Risk
strategies available to, Determine Risk
technology for, Counter the Threat with
Technology

MITRE Corporation, assigning unique values to
security bugs, "Many Eyeballs" Misses the Point
Altogether
mobile code

called by any Web page, ActiveX "Safe for
Scripting"
hosted in a browser, Malforming packets on the
fly
questions in the Security Risk Assessment,
Mobile-Code Questions
running in a Web browser with more capability,
Elevation of Privilege

model-building process, What to Model
modes for symmetric algorithms, Symmetric Stream
Ciphers and Key Lengths
modules, modeling smaller, What to Model
monetary value, assigning to the risk of disclosing
data, Worlds of Security and Privacy Collide
Moore’s Law, SDL Minimum Cryptographic
Standards

848

moving people around doctrine, Small Releases and
Iterations
MS-DOS, designed as single-user operating systems,
A Short History of the SDL at Microsoft
MSDN (Microsoft Developer Network)

documentation in, Mainline Product Use
Documentation
programming language-specific guidance,
Mainline Product Use Documentation

MSF for Agile Software Development, CMMI, TSP,
and PSP
MSN

Anti-Phishing add-in, Integrating SDL with Agile
Methods
Messenger 7.5, Integrating SDL with Agile
Methods
projects as rapidly developed small releases,
Integrating SDL with Agile Methods
projects delivered using Agile methods,
Integrating SDL with Agile Methods
Support tools, Integrating SDL with Agile
Methods
Tabbed Browsing for Microsoft Internet,
Integrating SDL with Agile Methods
teams, Using SDL Practices with Agile Methods,
Secure Coding and Testing Policies

MSRC (Microsoft Security Response Center)

849

anticipating press questions, Content creation
content produced by, Testing
dealing with all externally discovered
vulnerabilities, Rules Will Change
identifying duty officers, Managing the security
researcher relationship
initiating press outreach, Update release
initiating the Watch phase of SSIRP, Emergency
Response Process
maintaining emergency contact information,
Create Your Response Team
preceded by the Security Response Team, New
Threats, New Responses
reaching out to the press proactively, Content
creation
releasing and testing updates, Be Able to Install
an Update
security bulletin rankings, Identify Threats to the
System
Security Bulletin Rating System, Triaging
working with partners, Watch phase

multilayer defenses, Step 2: Who Needs Access to the
Functionality and from Where?
multiprocess DFD element type, Create One or More
DFDs of the Application Being Modeled
Must Fix bug bar category, Malforming packets on
the fly, Fixing Bugs Found Through Fuzz Testing
Must Investigate bug bar category, Malforming
packets on the fly, Fixing Bugs Found Through Fuzz
Testing

850

MySQL ALTER TABLE/RENAME Forces Old
Permission Checks, Source-Code Analysis Tool
Traps
MySQL, security bugs, Source-Code Analysis Tool
Traps

851

N

852

n functions

as hard to secure, Banned "n" sprintf Functions
and Replacements
reasons for banning, Banned IsBad* Functions
and Replacements

n scanf functions, Banned String Tokenizing
Functions and Replacements
n sprintf functions, Banned "n" sprintf Functions
and Replacements
n string concatenation functions, Banned "n" sprintf
Functions and Replacements
n string copy functions, Banned "n" sprintf
Functions and Replacements
n-byte data format for a PNG chunk, Malform a file
names of functions, The Banned APIs
national governments, seeking to steal secrets or
disrupt systems or networks, Where Do
Vulnerability Reports Come From?
National Vulnerability Database, Is the SDL
Necessary for You?
native authentication schemes, Pet Shop 4.0 Security
Assumptions
negative values, setting numeric data to, Malform a
file
.NET common language runtime (see .)

853

vs. ActiveX code, More Attack Surface Elements
checking managed code assemblies for
conformance, FxCop
cryptography class libraries defined in,
Cryptographic Technologies vs. Low-Level
Cryptographic Algorithms
making as secure as possible, Security Pushes and
Final Security Reviews
security updates addressing externally discovered
vulnerabilities, Provide Resources
SHA-2 hash functions available in, Hash
Functions
ship schedule delayed for, Provide Resources

Netscape, early discoveries of vulnerabilities in, First
Steps
network accessibility

reducing, Managed Code
AllowPartiallyTrustedCallers Attribute
reducing in SQL Server 2005, Managed Code
AllowPartiallyTrustedCallers Attribute
restricting by a configuration switch, Step 2: Who
Needs Access to the Functionality and from
Where?

network administrators, Attack-Surface Scrub

(see also .)

network connections, ActiveX "Safe for Scripting"

(see also .)
open vs. closed, ActiveX "Safe for Scripting"

854

network entry points, Attack-Surface Scrub

(see also .)
restricting, Attack-Surface Scrub

network fuzzing (see .)
network protocol format, building malformed
packets based on, Fuzzing Network Protocols
network protocols

building fuzzers for complex, Create bogus
packets
fuzzing, Fuzzing Network Protocols
parsing, Fuzz Testing
reaching deep parts of, Fuzzing Network
Protocols
using standard, SDL Minimum Cryptographic
Standards

Network Service

account in IIS6, Step 3: Reduce Privilege
main SQL Server process running as, Managed
Code AllowPartiallyTrustedCallers Attribute
using in place of Local System, Step 3: Reduce
Privilege

network traffic, fuzzing, Fuzzing Network Protocols
Neumann, Peter, "Many Eyeballs" Misses the Point
Altogether
Nimda worm, Seeking Scalability: Through
Windows XP, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
*nix

855

creating a special group for the application, Step
3: Reduce Privilege
daemon processes, Step 2: Who Needs Access to
the Functionality and from Where?
bad design constructs including symbolic-link
errors, Do Not Use Banned Functions
reviewing code setting permissions, More Attack
Surface Elements
variants, Safe CRT Example

NNTP, turning off by default, Managed Code
AllowPartiallyTrustedCallers Attribute
nobody account, Step 3: Reduce Privilege
noise, mistaking for real bugs, Source-Code Analysis
Tool Traps
non-repudiation, Repudiation
non-repudiation services

mitigation technique against repudiation, Plan
Mitigations
mitigation technique technologies, Counter the
Threat with Technology

non-security fix, Creating the fix
nonce, Storing Private Keys and Sensitive Data
Not a Security Bug predefined value, Build the
Security Leadership Team, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
Not acceptable (1) rating for a threat model, Using a
Threat Model to Aid Code Review
NSA (National Security Agency), First Steps
NTBugtraq, Take Your Time

856

null credential, Spoofing an External Entity or a
Process
NULL DACL, Do Not Use Banned Functions
null-terminated strings, Malform a file
numbering system for DFD elements, Create One or
More DFDs of the Application Being Modeled
numeric calculations, determining risk, Identify
Threats to the System
numeric conversion functions, Banned String
Tokenizing Functions and Replacements
numeric data types

setting to, Enough Is Enough: The Threats Have
Changed, Malform a file
setting to negative values, Malform a file
setting to zero, Malform a file

/NXCOMPAT linker option, Safe Exception
Handling: /SAFESEH

857

O

858

occluded data, Information Disclosure of a Data
Store
Ocm (monetary costs of conviction for the attacker),
Enough Is Enough: The Threats Have Changed
Ocp (cost of committing the crime), Enough Is
Enough: The Threats Have Changed
OEM conversion functions, Banned IsBad*
Functions and Replacements
off by default, Identify Threats to the System
Office 2003

improved security for, Security Pushes and Final
Security Reviews
reduced attack surface in, Managed Code
AllowPartiallyTrustedCallers Attribute

OK (2) rating for a threat model, Using a Threat
Model to Aid Code Review
older protocols, Mainline Product Use
Documentation
on by default, Identify Threats to the System
on-site customers, Project Inception
ongoing security education, A Short History of
Security Education at Microsoft, Key Success
Factors and Metrics
online e-commerce applications, Create One or More
DFDs of the Application Being Modeled
online Help files, creating, Risk Analysis
online portal for security-relevant developer
information, Mainline Product Use Documentation
online products, Determine Whether the Application
Is Covered by SDL

859

online references, Acknowledgments
online training, Types of Training Delivery
open design, Stage 2: Define and Follow Design Best
Practices
open source

community, "Given enough eyeballs, all bugs are
shallow", "Many Eyeballs" Misses the Point
Altogether
movement, "Given enough eyeballs, all bugs are
shallow"
security bugs in software, "Many Eyeballs"
Misses the Point Altogether
security experts, "Many Eyeballs" Misses the
Point Altogether

open-ended rectangle, representing a data store,
Create One or More DFDs of the Application Being
Modeled
OpenBSD project, refering to security bugs as
reliability bugs, Another Factor That Influences
Security: Reliability
operating system authentication vs. native, Pet Shop
4.0 Security Assumptions
operating system objects, weak permissions or ACLs
on, More Attack Surface Elements
operating systems

860

intended to reach Class A1, Your Development
Team Will Make Mistakes
shoring up security, Enough Is Enough: The
Threats Have Changed
single-user, A Short History of the SDL at
Microsoft

opt-in basis for a weak algorithm, Cryptographic
Agility
opt-in features, as less severe than features enabled
by default, Step 1: Is This Feature Really That
Important?
optimization

conflict with security, Coding to Standards
leaving until last, Coding to Standards

Oracle database products, vulnerability finders
effects focused on, Is the SDL Necessary for You?
oral tradition of effective practices and issues to
watch out for, Security Pushes and Final Security
Reviews
Orange Book (see .)
organized crime, Enough Is Enough: The Threats
Have Changed

(see also ; ; .)
bent on committing financial fraud, Where Do
Vulnerability Reports Come From?
releasing malicious code, Rules Will Change

OS vendors, differentiating between reliability and
security fixes, Another Factor That Influences
Security: Reliability

861

out-of-band release, Update release
output buffers, validating, Banned IsBad* Functions
and Replacements
overflow, no error returns on, Why the "n"
Functions Are Banned
overflowed buffers, non-null termination of, Why the
"n" Functions Are Banned

862

P

863

Pa (probability of being apprehended and arrested),
Enough Is Enough: The Threats Have Changed

influencing an Internet attacker, Enough Is
Enough: The Threats Have Changed
not controllable by the software development
industry, Enough Is Enough: The Threats Have
Changed

packet sniffer, Create bogus packets
packets

capturing valid and replaying, Create bogus
packets
creating bogus, Fuzzing Network Protocols
malforming on the fly, Create bogus packets
record-fuzz-replay, Create bogus packets
tweaking before sending to the destination
computer, Create bogus packets

pair programming, Using SDL Practices with Agile
Methods, Coding to Standards
Pairprogramming.com, Coding to Standards
parallel lines shape in a DFD, Create One or More
DFDs of the Application Being Modeled
parsers

classes of, Fuzz Testing
types of, Fuzz Testing

partner programs, Managing the security researcher
relationship
PasswordDeriveBytes, Storing Private Keys and
Sensitive Data
passwords

864

code handling, Code Reviews
direct hashing of, Storing Private Keys and
Sensitive Data
generating random numbers and cryptographic
keys from, Storing Private Keys and Sensitive
Data
used to authenticate, Privacy Impact Rating
using DPAPI to store, Storing Private Keys and
Sensitive Data

patching

gauging the effectiveness of, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
need for frequent, Commitment at Microsoft

Pb (psychological benefit for the attacker), Enough Is
Enough: The Threats Have Changed
Pc (probability of conviction for the attacker),
Enough Is Enough: The Threats Have Changed
peer-to-peer applications, prohibited in Pet Shop 4.0,
Pet Shop 4.0 Security Assumptions
penetration test team

code review by, Windows 2000 and the Secure
Windows Initiative
deployment of a dedicated, Windows 2000 and the
Secure Windows Initiative
reviewing code of Windows 2000 components,
Windows 2000 and the Secure Windows Initiative

penetration testing, Fixing Bugs Found Through
Fuzz Testing

865

conducting during the Windows Server 2003
security push, Security Pushes and Final Security
Reviews
identifying requirements for, Stage 3: Product
Risk Assessment
starting, Penetration Testing
by a third-party company, Penetration Testing
threat modeling guiding, Stage 4: Risk Analysis

Performing Security Code Reviews class, Ongoing
Education
perimeter defenses, firewalls as, Step 2: Who Needs
Access to the Functionality and from Where?
Perl script, Benefits of Source-Code Analysis Tools
permissions, weak vs. strong, More Attack Surface
Elements
personal firewalls, Managed Code
AllowPartiallyTrustedCallers Attribute
Personal Software Process (PSP), "Many Eyeballs"
Misses the Point Altogether, CMMI, TSP, and PSP
personally identifiable information (see .)
personas, Project Inception
Pescatore, John, It’s Really About Quality, Stage 5:
Creating Security Documents, Tools, and Best
Practices for Customers
Pet Shop 4.0

866

audit-log facility added to, Create One or More
DFDs of the Application Being Modeled
context diagram, Create One or More DFDs of the
Application Being Modeled
defenses used in portions of, (4.7.1) Order
Processor Process
determining threats for DFD elements within,
Identify Threats to the System
external dependencies, Define Use Scenarios,
Create External Security Notes
external security information, Pet Shop 4.0
Security Assumptions
level-0 DFD, Create One or More DFDs of the
Application Being Modeled
level-1 DFD, Create One or More DFDs of the
Application Being Modeled
list of interesting threats to, Counter the Threat
with Technology
list of potential threats, Identify Threats to the
System
port usage in, Pet Shop 4.0 External Security
Information
relating external dependencies, security
assumptions, and external security information,
Create External Security Notes
reviewing code for security bugs, (4.7.1) Order
Processor Process
security assumptions, Create External Security
Notes
using DPAPI, Pet Shop 4.0 Security Assumptions

867

PETs (privacy enhancing technologies), Ongoing
Education
PEVerify tool, Code Reviews
PII (personally identifiable information), Privacy
Impact Rating

application storing or transferring, Privacy
Ranking 1
business value and customer value for collecting,
Privacy Ranking 1
products storing, processing, or communicating,
Stage 1: Project Inception
vs. sensitive data, Identify Threats to the System

pillars of the Trustworthy Computing initiative,
Another Factor That Influences Security: Reliability
PINs (personal identification numbers), Privacy
Impact Rating
pipes, counting all open, Threat Model Updates
planning Agile doctrines, Security Response
Execution
platform API, handing file data off to, A generic
file-fuzzing process
platform products, Commitment at Microsoft
PNG files

868

setting invalid compression, filter, or interlace
modes, Malform a file
setting invalid width, height, or color depth to
invalid values, Malform a file
signature followed by a series of chunks, A generic
file-fuzzing process
smart fuzzing techniques, Malform a file
structuring multibyte integers with the most
significant byte first, Malform a file

point of contact for security researchers, Security
Response Process
POP, turning off by default, Managed Code
AllowPartiallyTrustedCallers Attribute
ports

blocking unused, Creating Tools
counting all open, Threat Model Updates
open, Pet Shop 4.0 Security Assumptions
relationships among computers, Pet Shop 4.0
External Security Information

POSIX capabilities, privileges in, Step 2: Who Needs
Access to the Functionality and from Where?
PowerPoint presentation of a training class,
Implementing Your Own In-House Training
PPRC (Programmer Productivity Research Center),
Windows 2000 and the Secure Windows Initiative
pre-play attack, Denial of Service Against a Data
Flow
pre-ship reviews (see .)
predictability

869

decision to abandon, Update release
maximizing as an aspect of update release,
Content creation

predictable credential, Tampering with a Process
PREfast, Benefits of Source-Code Analysis Tools,
SDL-Required Tools and Compiler Options

compared to PREfix, Seeking Scalability:
Through Windows XP
defective-code warnings, PREfast
development of, Seeking Scalability: Through
Windows XP
special runs of, Security Pushes and Final
Security Reviews
updates to, Update release
in Visual Studio 2005, Source-Code Analysis Tool
Traps

PREfast source-code analysis technology, Do Not Use
Banned Functions
PREfix, Windows 2000 and the Secure Windows
Initiative

compared to PREfast, Seeking Scalability:
Through Windows XP
deployment of, Windows 2000 and the Secure
Windows Initiative
improvement of, Seeking Scalability: Through
Windows XP
special runs of, Security Pushes and Final
Security Reviews
updates to, Update release

870

prepare step of the model-building process, What to
Model
prerelease debug code, Unmanaged Compiler Flags
prerelease security reviews, Security Pushes and
Final Security Reviews
presenters, experienced, Key Success Factors and
Metrics
press coverage on security problems, Commitment at
Microsoft
press outreach

initiating, Update release
preparation for, Content creation

principals, authenticating, Counter the Threat with
Technology
print spooler, Another Factor That Influences
Security: Reliability
priorities

for the upgrade process, Be Able to Install an
Update
for reviewing code, Training

privacy, Worlds of Security and Privacy Collide

871

analysis at the highest privacy ranking, Privacy
Impact Rating
analyzing and triaging, Holding an SDL Kick-Off
Meeting for the Development Team
basics of, Ongoing Education
compared to security, Worlds of Security and
Privacy Collide
diametrically opposed to security, Worlds of
Security and Privacy Collide
as a driver for effective security measures, Worlds
of Security and Privacy Collide
focus of, Worlds of Security and Privacy Collide
issues quickly yielding negative headlines, Worlds
of Security and Privacy Collide
overlap with reliability, It’s Really About Quality
overlap with security, It’s Really About Quality
risk component of, A Challenge to Large ISVs
thoroughness, Privacy Impact Rating
violations, Repudiation

privacy bugs, tracking, Build the Security
Leadership Team
privacy enhancing technologies (PETs), Ongoing
Education
Privacy Impact Rating, Stage 3: Product Risk
Assessment, Analyzing the Questionnaire
privacy issues

of CVE bugs, Another Factor That Influences
Security: Reliability
as high-impact, Make Sure the Bug-Tracking
Process Includes Security and Privacy Bug Fields

872

privacy ranking 1, Privacy Ranking 1
privacy ranking 2, Privacy Ranking 1
privacy ranking 3, Privacy Ranking 1
privacy rankings, Privacy Impact Rating

levels, Analyzing the Questionnaire

private keys, storing, Hash Functions
privilege boundary DFD element type, Create One or
More DFDs of the Application Being Modeled
privilege delta, Create One or More DFDs of the
Application Being Modeled
privilege level for code, Step 2: Who Needs Access to
the Functionality and from Where?
privileges

aspects of, Step 2: Who Needs Access to the
Functionality and from Where?
associated with an account, Step 2: Who Needs
Access to the Functionality and from Where?
code executing with high, Code Reviews
data moving from lower to higher, Create One or
More DFDs of the Application Being Modeled
dropping unneeded in Windows, Step 3: Reduce
Privilege
elevation of, Denial of Service Against a Data
Store
operating with the lowest level of, Common
Secure-Design Principles
required for specific functionality, Mainline
Product Use Documentation
separation of, Common Secure-Design Principles

873

process boundaries, Create One or More DFDs of the
Application Being Modeled
process DFD element type, Create One or More
DFDs of the Application Being Modeled, Threat Tree
Patterns
processes, Denial of Service Against a Process

(see also .)
denial of service against, Denial of Service Against
a Process
information disclosure of, Information Disclosure
of a Process
long-running, Step 2: Who Needs Access to the
Functionality and from Where?
tampering threat for, (4.7.1) Order Processor
Process
tampering with, Tampering with a Process
in a user story, Risk Analysis
verifying the level of privilege for, Attack-Surface
Scrub

product backlog in Scrum, Secure Coding and
Testing Policies
product changes, restricting malicious programs
from exploiting, Rules Will Change
product release, Stage 11: Product Release, Product
Release
product risk assessment, Stage 3: Product Risk
Assessment

stage of SDL, Stage 3: Product Risk Assessment

product teams

874

coordination during the FSR, Stage 9: The Final
Security Review
developing any fix to address a vulnerability,
Creating the fix
eliminating newly discovered vulnerabilities,
Update release
gaining understanding to make a
recommendation, Watch phase
initial SWI team chartered to work with,
Windows 2000 and the Secure Windows Initiative
preparation for security response, Resolve phase
providing contact information, Create Your
Response Team
responding to externally discovered
vulnerabilities, Resolve phase
SDL compliance requirement, Tracking
Attendance and Compliance
SWI team tending, Windows 2000 and the Secure
Windows Initiative
working alongside the response center team,
Creating the fix

product use documentation, Creating Prescriptive
Security Best Practice Documentation
product-development process cycle, Find the
Vulnerabilities Before the Researchers Do
products

875

allocating team cost to, Stop Products
experts from the product group, Triaging
making updatable, Support All Your Customers
supporting entire, Create Your Response Team
vulnerabilities affecting multiple versions,
Creating the fix

program managers, Is the SDL Necessary for You?

(see also .)
driving the response process, Create Your
Response Team
reviewing threat models, Code Reviews

Programmer Productivity Research Center (PPRC),
Windows 2000 and the Secure Windows Initiative
programming languages, source-code analysis tools
and, 146programmers, two working together as
equals, Coding to Standards
project inception, Stage 1: Project Inception, Using
SDL Practices with Agile Methods
project management team, Acting as a Security
Sounding Board for the Development Team
properties, fuzzing systematically, Malforming
packets on the fly
proprietary software development methods, "Many
Eyeballs" Misses the Point Altogether
protected objects, Stage 2: Define and Follow Design
Best Practices
protection of data flow, Tampering with a Data Store
Protection of Information in Computer Systems,
The, Stage 2: Define and Follow Design Best
Practices

876

protocol exposure, reducing, Creating Tools
protocols (see .)
pseudorandom functions, Storing Private Keys and
Sensitive Data
PSP (Personal Software Process), "Many Eyeballs"
Misses the Point Altogether, CMMI, TSP, and PSP
psychological acceptability, Common Secure-Design
Principles
public e-mail list, vulnerabilities reported to,
Triaging
publicly known exploit code, Consume the file and
observe the application
push (see .)
push leadership team, Stage 8: The Security Push

877

Q
QFE (Quick-Fix Engineering), Creating the fix
quality

bugs, It’s Really About Quality
fixes, Stay Cool
guidelines for threat models, Using a Threat
Model to Aid Code Review
mistakenly associating CC with, Common
Criteria
relationship with security, privacy, and reliability,
It’s Really About Quality
security as a measure of, Why Small Software
Developers Should Create More Secure Software

questionnaire, filled out during the FSR, Stage 9:
The Final Security Review
quick and dirty tool, creating, Benefits of
Source-Code Analysis Tools

878

R

879

Race Condition predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
random chunk names, Malform a file
random data, filling files with, Malform a file
random numbers, generating, Storing Private Keys
and Sensitive Data
rand_s runtime library function, Storing Private
Keys and Sensitive Data
rapid-development processes, Integrating SDL with
Agile Methods
rates of discovery of security bugs, Provide
Resources
ratings for threat models, Using a Threat Model to
Aid Code Review
raw memory dump, Privacy Impact Rating
Raymond, Eric, "Given enough eyeballs, all bugs are
shallow"
RC2, Symmetric Block Ciphers and Key Lengths
RC4 stream cipher

existing code using, Symmetric Block Ciphers and
Key Lengths
using with extreme caution, Symmetric Block
Ciphers and Key Lengths

reactive security team, Acting as a Security Sounding
Board for the Development Team
Read Access Violation error, Malforming packets on
the fly
Read Access Violations, Fixing Bugs Found Through
Fuzz Testing

880

read-only string <pointer> in PREfast, FxCop
Record Narration option in PowerPoint,
Implementing Your Own In-House Training
record-fuzz-replay packets, Create bogus packets
rectangle shape in a DFD, Create One or More DFDs
of the Application Being Modeled
reduction process, Identify Threats to the System
refactoring, Refactoring

in Extreme Programming, Secure Coding and
Testing Policies
for the sake of refactoring, Refactoring

refactoring spikes, reviewing legacy code, Secure
Coding and Testing Policies
references, online, Acknowledgments
regression test suites, Managing the security
researcher relationship
regressions

caused by fixes, Creating the fix
entering into the code base during refactoring,
Refactoring
identified by the customer testing program,
Testing
introducing with a security defense, Small
Releases and Iterations
preventing, When a Bug Is Found, a Test Is
Created
security fixes and, Creating the fix
successful avoidance of, Creating the fix
testing to detect and eliminate, Managing the
security researcher relationship

881

related vulnerabilities, Triaging

(see also .)
factors making the search especially challenging,
Creating the fix
fixes eliminating, Creating the fix
illustration of the search for, Creating the fix

relationships with security researchers, Creating the
fix, Stay Cool
Release Candidate stage, Security Pushes and Final
Security Reviews
release management team, Stage 8: The Security
Push
release plan under Extreme Programming, Product
Release
release, fixing defects found during, Stage 4: Risk
Analysis
release-when-ready policy, Content creation
reliability

influences on security, Another Factor That
Influences Security: Reliability
at odds with security, Another Factor That
Influences Security: Reliability
overlap with privacy, It’s Really About Quality
overlap with security, It’s Really About Quality
uptime and service-level agreement component of,
A Challenge to Large ISVs

reliability bugs, Stage 7: Secure Testing Policies
reliability issues

882

of CVE bugs, Another Factor That Influences
Security: Reliability
potential, Fixing Bugs Found Through Fuzz
Testing

remedy, creating the real, Product Release
remote accessibility, Identify Threats to the System
remote procedure call (RPC)

end points, Threat Model Updates
vulnerabilities, Factors That Affect the Cost of
SDL

removal tools, releasing to help fix damage, Rules
Will Change
remove the feature mitigation strategy, Determine
Risk, Plan Mitigations
replacement functions, misusing, Why the "n"
Functions Are Banned
replay of data flow, Tampering with a Data Flow
repudiation

as a potential threat to a data store, Identify
Threats to the System
tampering threat leading to, Counter the Threat
with Technology

Repudiation predefined value, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
repudiation threat tree, Repudiation
repudiation threats, Repudiation

883

data store subject to, Threat Tree Patterns
no risk rankings for, Determine Risk
using non-repudiation services, Plan Mitigations

reputation, building with researchers, Stay Cool
requests for comments (RFCs), Stage 2: Define and
Follow Design Best Practices
requests, denial as the default action for, Stage 2:
Define and Follow Design Best Practices
required tools for the SDL process, SDL-Required
Tools and Compiler Options
researchers (see .)
Resolve phase of the SSIRP, Resolve phase
resource consumption

application-specific, Denial of Service Against a
Process
limits on, Denial of Service Against a Process

Resource Consumption predefined value, Make Sure
the Bug-Tracking Process Includes Security and
Privacy Bug Fields
resource data, collecting fine-grained, Stop Products
resources

committing to implementing SDL, Stop Products
provided by management, Be Visible

response center

884

acknowledging security researchers, Managing
the security researcher relationship
believing security researchers to be hostile,
Managing the security researcher relationship
hours and days of operation, Security Response
Process
relationship with customer-support or
field-service teams, Security Response Process
responding to e-mail, Security Response Process

response plan, Take Your Time

following, Stage 12: Security Response Execution
getting by in the absence of, Follow Your Plan

response process, Preparing to Respond

calling on the developer who owns the code,
Create Your Response Team
following all steps in, Stay Cool
inventing in real time, Be Able to Install an
Update
invoking in the case of emergencies, Preparing to
Respond
knowing the priorities for, Be Able to Install an
Update
as used by a software vendor, New Kinds of
Vulnerabilities Will Appear

response program manager, Create Your Response
Team
response team

885

creating, Resolve phase
remaining polite and cooperative, Stay Cool
reproducing the vulnerability as reported,
Triaging

response-contact role at Microsoft, Create Your
Response Team
responsible disclosure

encouraging, Where Do Vulnerability Reports
Come From?
security researchers practicing, Creating the fix

return on investment (ROI), Worlds of Security and
Privacy Collide
review priority for code, Code Reviews
Reviewed by field, Code Reviews
reviewing code during the security push, Training
Rfc2898DeriveBytes for .NET code, Storing Private
Keys and Sensitive Data
RFCs (requests for comments), Stage 2: Define and
Follow Design Best Practices
risk

assigning a monetary value to, Worlds of Security
and Privacy Collide
reducing by disabling unused privileges, Mainline
Product Use Documentation
determining, Identify Threats to the System
in the setup process, Creating Prescriptive
Security Best Practice Documentation

risk analysis, Project Inception
risk analysis stage of SDL, Stage 4: Risk Analysis

886

risk assessment

analyzing, Analyzing the Questionnaire
deliverables, Stage 3: Product Risk Assessment
questions in, Stage 3: Product Risk Assessment

risk calculations, privacy and, Worlds of Security
and Privacy Collide
risk level

1 or 2 threats, Determine Risk
3 threats, Determine Risk
4 threats, Determine Risk
indicating overall risk, Identify Threats to the
System

risk management

putting a monetary value on risk, Worlds of
Security and Privacy Collide
threat modeling contributing to, Stage 4: Risk
Analysis

risk rankings, from MSRC security bulletins,
Identify Threats to the System
RNGCryptoServiceProvider method, Storing Private
Keys and Sensitive Data
/robust switch in MIDL, Safe Exception Handling:
/SAFESEH
rogue server, building to fuzz data, Malforming
packets on the fly
roles in customer questions, Risk Analysis
root account

887

as all-powerful in Linux, Create External Security
Notes
operating a computer as, Worlds of Security and
Privacy Collide
role of, Define Use Scenarios

root context, processes running in, Step 2: Who
Needs Access to the Functionality and from Where?
root privileges, running code, Managed Code
AllowPartiallyTrustedCallers Attribute
root public folders, Managed Code
AllowPartiallyTrustedCallers Attribute
root-cause analysis

applying for security bugs, Security Response
Execution
conducting for every vulnerability, Update release

routine security update, Follow Your Plan
RPC

888

attack surface change, Step 2: Who Needs Access
to the Functionality and from Where?
communication, Managed Code
AllowPartiallyTrustedCallers Attribute
compiler, Application Verifier
datagram protocols, More Attack Surface
Elements
interfaces, Managed Code
AllowPartiallyTrustedCallers Attribute
ports, Step 2: Who Needs Access to the
Functionality and from Where?
traffic, Step 2: Who Needs Access to the
Functionality and from Where?

RPC/DCOM

requiring authentication by default, Creating the
fix
vulnerabilities, Make Your Product Updatable

RSA-based asymmetric encryption and digital
signatures, Symmetric Stream Ciphers and Key
Lengths
/RTC run-time check options, Unmanaged Compiler
Flags
rules, changing for response, New Kinds of
Vulnerabilities Will Appear
run-time verification testing, Penetration Testing

889

S

890

Safe CRT functions

distribution method, Why the "n" Functions Are
Banned
example code converted to, Safe CRT Example
more consistent on failure, Why the "n"
Functions Are Banned
vs. StrSafe, Why the "n" Functions Are Banned

safe exception handling:/SAFESEH, Use the Latest
Compiler and Supporting Tool Versions
safe for scripting controls, More Attack Surface
Elements
safe function calls, compiler changing function calls
to, Using StrSafe
/SAFESEH, Use the Latest Compiler and Supporting
Tool Versions

linking unmanaged code with, Unmanaged
Compiler Flags
under Agile methods, Security Push

salt, Storing Private Keys and Sensitive Data
Saltzer and Schroeder, Ongoing Education
same-origin policy, Elevation of Privilege
sample code (see .)
sanity check, testing as, Stage 7: Secure Testing
Policies
SANS Institute, Is the SDL Necessary for You?
Sasser worm, Step 2: Who Needs Access to the
Functionality and from Where?
scalability, through Windows XP, Windows 2000 and
the Secure Windows Initiative

891

scalable approach to improving product security,
Windows 2000 and the Secure Windows Initiative
scanf functions, Banned String Tokenizing Functions
and Replacements
scanning tools, Factors That Affect the Cost of SDL
scenarios, defining, Building the Threat Model
schema validation code, Malforming packets on the
fly
Schroder, Ongoing Education
script kiddies, First Steps
Scrum, Integrating SDL with Agile Methods, Secure
Coding and Testing Policies
SCW (Security Configuration Wizard), Creating
Tools
SDL (Security Development Lifecycle)

892

applying to in-house (line-of-business)
applications, Commitment at Microsoft
applying to legacy code, Stop Products
assessing the quality of implementation, Factors
That Affect the Cost of SDL
banned function calls, SDL Banned Function
Calls
benefits for in-house developers, A Challenge to
Large ISVs
birth of, Enough Is Enough: The Threats Have
Changed
cheapest for projects built from scratch, Stop
Products
class covering, Ongoing Education
cost of implementing, Factors That Affect the
Cost of SDL
costs and benefits of, Is the Project on Track?
costs of, It’s Really About Quality, SDL for
Management, Stop Products
criteria for, Security Pushes and Final Security
Reviews, Commitment at Microsoft
cryptographic standards, SDL Minimum
Cryptographic Standards
determining whether an application is covered by,
Stage 1: Project Inception
difference from CMMI/TSP/PSP processes,
CMMI, TSP, and PSP
easier to apply to languages producing managed
code, Factors That Affect the Cost of SDL
formalizing, Security Pushes and Final Security
Reviews

893

goal of reducing security bugs, "Many Eyeballs"
Misses the Point Altogether
history of at Microsoft, A Short History of the
SDL at Microsoft
implementing on the cheap, Be Visible
improved security quality, CMMI, TSP, and PSP
as an integrated process, SDL for Management
integrating with Agile methods, Integrating SDL
with Agile Methods
major goals for, Stage 2: Define and Follow
Design Best Practices
management and, SDL for Management
managing, Stop Products
mandated by Microsoft senior management,
Security Pushes and Final Security Reviews
necessity of, Commitment at Microsoft
opportunities for statements, recognition, and
reinforcement, Be Visible
paying close attention to outputs of, Factors That
Affect the Cost of SDL
reasons for adopting, It’s Really About Quality
required tools and compiler options,
SDL-Required Tools and Compiler Options
requirements for cryptographic algorithms and
key lengths, Cryptographic Agility
resources needed to implement, Be Visible
security best practices augmenting Agile
doctrines, Security Response Execution
stage 1 (project inception), Stage 1: Project
Inception

894

stage 10 (security response planning), Stage 10:
Security Response Planning
stage 11 (product release), Stage 11: Product
Release
stage 12 (security response execution), Stage 12:
Security Response Execution
stage 2 (define and follow design best practices),
Stage 2: Define and Follow Design Best Practices
stage 3 (product risk assessment), Stage 3:
Product Risk Assessment
stage 4 (risk analysis), Stage 4: Risk Analysis
stage 5 (creating documents, tools, and best
practices for customers), Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
stage 6 (secure coding policies), Stage 6: Secure
Coding Policies
stage 7 (secure testing policies), Stage 7: Secure
Testing Policies
stage 8 (security push), Stage 8: The Security Push
stage 9 (Final Security Review), Stage 9: The Final
Security Review
stages of, Formalizing the Security Development
Lifecycle, Factors That Affect the Cost of SDL
subsequent releases cheaper under, Factors That
Affect the Cost of SDL
view of banned APIs, The Banned APIs
vulnerability reduction of more than 50 percent,
A Challenge to Large ISVs
ways of measuring compliance with, Tracking
Attendance and Compliance

895

SDL bug, core elements of, Determine Risk
SDL practices, using with Agile methods, Using SDL
Practices with Agile Methods
SDL Version 2.0, Formalizing the Security
Development Lifecycle
SDL Version 2.1, Formalizing the Security
Development Lifecycle
SDL Version 2.2, Formalizing the Security
Development Lifecycle
SDL Version 3.0, Formalizing the Security
Development Lifecycle
SecAudit field, Threat Models Review
secrecy, design should not depend on, Common
Secure-Design Principles
secret data, using DPAPI to store, Storing Private
Keys and Sensitive Data
Secure by Default, Stage 2: Define and Follow Design
Best Practices
Secure by Design, Stage 2: Define and Follow Design
Best Practices
secure coding best practices

adhering to under Agile methods, Security Push
adopting as coding practices, Risk Analysis
in The Basics presentation, A Short History of
Security Education at Microsoft

secure coding checklist, Use a Secure Coding
Checklist
Secure Coding Practices class, Ongoing Education
secure coding standards, Refactoring
secure design

896

basics of, A Short History of Security Education
at Microsoft
best practices, Holding an SDL Kick-Off Meeting
for the Development Team
guidance, Stage 2: Define and Follow Design Best
Practices
principles, Ongoing Education, Stage 2: Define
and Follow Design Best Practices
reducing code-level errors, Factors That Affect
the Cost of SDL
rendered pointless implementation, Common
Secure-Design Principles

secure features, Stage 0: Education and Awareness
secure software, as quality software, Secure Coding
and Testing Policies
secure testing policies, Stage 7: Secure Testing
Policies
Secure Windows Initiative Attack team (see .)
Secure Windows Initiative team (see .)
secure@microsoft.com, Security Response Process,
Take Your Time
security

897

benefits of running as a normal user, Worlds of
Security and Privacy Collide
benefits to in-house applications, A Challenge to
Large ISVs
coding bugs and design errors, Another Factor
That Influences Security: Reliability
complexity as an enemy of, Small Releases and
Iterations
concerns in user stories, Project Inception
conflict with optimization, Coding to Standards
conflict with usability, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
CVE bugs, Another Factor That Influences
Security: Reliability
expectations, Mainline Product Use
Documentation
guidance and tools, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers
implications of backward compatibility and older
protocols, Mainline Product Use Documentation
influences of reliability on, Another Factor That
Influences Security: Reliability
information, Mainline Product Use
Documentation
informing customers about boundaries, Mainline
Product Use Documentation
landscape, Secure Coding and Testing Policies
mailing lists, Security Response Process, Take
Your Time

898

models, Ongoing Education
notes, Mainline Product Use Documentation, Risk
Analysis
at odds with reliability, Another Factor That
Influences Security: Reliability
opposed to privacy, Worlds of Security and
Privacy Collide
overlap with privacy, It’s Really About Quality
overlap with reliability, It’s Really About Quality
protecting privacy, Worlds of Security and
Privacy Collide
raising awareness of, A Short History of Security
Education at Microsoft
ramifications of enabling certain functionality, Pet
Shop 4.0 Security Assumptions
realms of, Stage 0: Education and Awareness
refactoring, Refactoring
relationship with quality, privacy, and reliability,
It’s Really About Quality
side effect of simple design, Project Inception
as skill common to all software developers, Small
Releases and Iterations
specialists, Small Releases and Iterations
supporting after development, Create Your
Response Team
technologies, Creating Prescriptive Security Best
Practice Documentation
training reducing the cost of, Factors That Affect
the Cost of SDL
using an established standard, SDL Minimum
Cryptographic Standards

899

wisdom, Acting as a Security Sounding Board for
the Development Team

Security Advisor

acting as a security sounding board, Acting as a
Security Sounding Board for the Development
Team
acting as central point of contact, Assign the
Security Advisor
as Agile security coach, Project Inception
assigning, Determine Whether the Application Is
Covered by SDL
communication relationship, Build the Security
Leadership Team
high-level goal of, Assign the Security Advisor
holding an SDL kick-off meeting for, Holding an
SDL Kick-Off Meeting for the Development Team
holding design and threat model review, Holding
an SDL Kick-Off Meeting for the Development
Team
preparing the development team for the FSR,
Acting as a Security Sounding Board for the
Development Team
reviewing unfixed security and privacy bugs,
Holding an SDL Kick-Off Meeting for the
Development Team
skills required, Assign the Security Advisor
tasks of, Assign the Security Advisor
working with the reactive security team, Acting as
a Security Sounding Board for the Development
Team

900

security advisories, Content creation
Security Alert section, Attack-Surface Scrub
security assumptions, Create External Security Notes

defining, Define Use Scenarios
gathered during the threat modeling process,
Stage 4: Risk Analysis
perceived threat as a violation, Identify Threats to
the System
for Pet Shop 4.0, Create External Security Notes
relationship with external security notes and
dependencies, Create External Security Notes

security audits (see .)
security best practices

adding to documentation, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers, Mainline Product Use Documentation,
Attack-Surface Scrub
creating for customers, Risk Analysis
including for each task, Mainline Product Use
Documentation
production of prescriptive, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
single location where users can find, Mainline
Product Use Documentation

security bugs

901

analyzing and triaging, Holding an SDL Kick-Off
Meeting for the Development Team
in applications, Enough Is Enough: The Threats
Have Changed
CC and, Common Criteria
of competitors, Managing the security researcher
relationship
creating test cases to find and fix, When a Bug Is
Found, a Test Is Created
excuses for not fixing, A Short History of Security
Education at Microsoft
fixing all exceeding the specified threshold for the
product, Threat Models Review
fixing as difficult and time consuming, Why Small
Software Developers Should Create More Secure
Software
fuzz testing finding certain classes of, Stage 7:
Secure Testing Policies
keeping test cases verifying the existence and
removal of, Consume the file and observe the
application
in legacy code, Secure Coding and Testing Policies
marking push-related, Preparing for the Security
Push
monitoring the rates and types of, Is the Project
on Track?
as not typical bugs, Product Release
in open source software, "Many Eyeballs" Misses
the Point Altogether
as part of the refactoring process, Refactoring

902

people generally better at finding, Secure Coding
and Testing Policies
plan in place to handle potential, Product Release
potential privacy issues, Worlds of Security and
Privacy Collide
as privacy issues, It’s Really About Quality
rates of discovery of, Provide Resources
reducing the chance of the introduction of, "Many
Eyeballs" Misses the Point Altogether
reducing the severity of any undiscovered, Stage
2: Define and Follow Design Best Practices
as reliability issues, It’s Really About Quality
reviewing code for, "Given enough eyeballs, all
bugs are shallow"
reviewing unfixed during the FSR, Threat Models
Review
root-cause analysis, Security Response Execution
tracking, Build the Security Leadership Team
treating compliance failure as, Tools-Use
Validation
understanding, Incentive to Review Code
unique values identifying, "Many Eyeballs"
Misses the Point Altogether
writing tests for under Extreme Programming,
Secure Coding and Testing Policies

Security Bugs in Detail class, Ongoing Education
Security Bulletin Rating System, Triaging
security bulletins, Testing

posting of, Content creation
URL for, SDL Banned Function Calls

903

security coach

moving around, Project Inception
translating threat model threats to customer
questions, Risk Analysis
under Agile methods, Using SDL Practices with
Agile Methods

security code reviews (see .)
Security Configuration Wizard (SCW), Creating
Tools
security consultants, Where Do Vulnerability
Reports Come From?
security contact, Acting as a Security Sounding
Board for the Development Team

(see also .)

security days, Windows 2000 and the Secure
Windows Initiative, Security Push
security defenses (see .)
Security Design and Architecture, Time-Tested
Design Principles class, Ongoing Education
security design reviews, Stage 3: Product Risk
Assessment
Security Development Lifecycle (see .)
security documents for customers, Risk Analysis
security education

904

creating materials on a budget, Implementing
Your Own In-House Training
as critical regardless of software development
method, Using SDL Practices with Agile Methods
of engineers, Stage 0: Education and Awareness
history of at Microsoft, Stage 0: Education and
Awareness
in the Agile environment, Using SDL Practices
with Agile Methods
requirements for successful, Implementing Your
Own In-House Training
vs. risk of security errors, Using SDL Practices
with Agile Methods

security evaluation criteria, First Steps
security expert myopia, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers
security expertise, Other Compliance Ideas
security experts

combining with product experts, Triaging
pairing team members with, Coding to Standards

security features, Stage 0: Education and Awareness

905

(see also .)
assessing the presence and assurance of, CMMI,
TSP, and PSP
employing as a workaround, Product Release
implementing as secure features, Common
Secure-Design Principles
questions in the Security Risk Assessment,
Mobile-Code Questions
taught at schools, universities, and technical
colleges, Stage 0: Education and Awareness

security fixes (see .)
security healthy team, Stage 4: Risk Analysis
security issues unlikely bug bar category, Fixing
Bugs Found Through Fuzz Testing
security leadership team

building, Acting as a Security Sounding Board for
the Development Team
relationship with Security Advisor, Build the
Security Leadership Team

security logs, Another Factor That Influences
Security: Reliability

(see also .)

security point person for the development group,
Assign the Security Advisor
security product vendors, research departments of,
Where Do Vulnerability Reports Come From?
security push Web site, Stage 8: The Security Push
security pushes, Secure Coding and Testing Policies

906

communication to the development team,
Documentation Scrub
completion of, Documentation Scrub
duration of, Preparing for the Security Push
ensuring shorter, Documentation Scrub
extended from two days to eight weeks, Be Visible
first conducted on .NET Framework CLR,
Security Pushes and Final Security Reviews
focusing on legacy code, Secure Coding and
Testing Policies
goal of finding bugs, Stage 8: The Security Push
not quick fixes for insecure code, Stage 8: The
Security Push
predicting the duration of, Are We Done Yet?
preparing for, Stage 8: The Security Push
for products or product service packs across
Microsoft, Security Pushes and Final Security
Reviews
reviewing threat models during, Threat Model
Updates
as the start of a long journey, Is the SDL
Necessary for You?
tasks during, Stage 8: The Security Push
timing of, Stage 8: The Security Push
training for, Preparing for the Security Push

security quality, SDL improving, CMMI, TSP, and
PSP
security regressions (see .)
security researchers, Where Do Vulnerability
Reports Come From?

907

acknowledging, Where Do Vulnerability Reports
Come From?, Managing the security researcher
relationship
communications with, Stay Cool
discovering a new class of vulnerability, Provide
Resources
finding new classes of vulnerabilities, Your
Development Team Will Make Mistakes
finding vulnerabilities before, Make Your Product
Updatable
giving an early copy of an update, Managing the
security researcher relationship
interacting with, Where Do Vulnerability Reports
Come From?
inviting to speak at training conferences,
Managing the security researcher relationship
not blaming, Stage 12: Security Response
Execution
personal connection with duty officers, Managing
the security researcher relationship
practicing responsible disclosure, Creating the fix
relationship with, Creating the fix
reverse engineering security updates, Which
Vulnerabilities Will You Respond To?
validity of reports, Triaging
vulnerabilities found by, Which Vulnerabilities
Will You Respond To?

security response

908

components to preparing for, Rules Will Change
continuing support of, Create Your Response
Team
development team and, Resolve phase
early preparation for, Stage 10: Security Response
Planning
execution, Product Release
included in the SDL process, Formalizing the
Security Development Lifecycle
as an integral component of SDL, Find the
Vulnerabilities Before the Researchers Do
plan for widely shared components, Support Your
Entire Product
planning, Stage 10: Security Response Planning
preparing for, Stage 10: Security Response
Planning

security response center

building, Preparing to Respond
dealing only with vulnerabilities in fielded
software, Preparing to Respond
focus during the response process, Security
Response Process
interacting with security researchers, Where Do
Vulnerability Reports Come From?
role of, Preparing to Respond

Security Response class, Ongoing Education
security response cycle, Find the Vulnerabilities
Before the Researchers Do
security response execution, Stage 12: Security
Response Execution

909

security response organization, joining, Take Your
Time
security response process, Where Do Vulnerability
Reports Come From?

dealing with externally discovered vulnerabilities,
Which Vulnerabilities Will You Respond To?
establishing, Rules Will Change
most important goal of, Stay Cool
much more expansive view now, New Kinds of
Vulnerabilities Will Appear
overview of, Security Response Process
rules changing for, New Kinds of Vulnerabilities
Will Appear
from the perspective of the development team,
Rules Will Change
by user organizations, Preparing to Respond

Security Response Team, First Steps
Security Risk Assessment, Stage 3: Product Risk
Assessment
Security Risk Assessment document, The Future
Evolution of the SDL
security software, CMMI, TSP, and PSP

(see also .)
coding best practices, Stage 2: Define and Follow
Design Best Practices

security stand-down (see .)
security stories, implementing, Security Push
Security Task Force

910

formed to examine underlying causes of
vulnerabilities, New Threats, New Responses
pointing the way to the SDL, New Threats, New
Responses
set of recommendations, New Threats, New
Responses

security team, nominating the Security Advisor from,
Determine Whether the Application Is Covered by
SDL
security testing

dedicated test cycle for, Secure Coding and
Testing Policies
during the security push, Threat Model Updates

security testing plans, using threat models to drive
and inform, Penetration Testing
security testing tools, use of appropriate, Tools-Use
Validation
security tests (see .)
security through obscurity, Stage 2: Define and
Follow Design Best Practices, Which Vulnerabilities
Will You Respond To?
security tools (see .)
Security Tools Overview class, Ongoing Education
security training (see .)
security update packaging, change in, Creating the
fix
security updates (see .)
security vulnerabilities (see .)
security-push testing, Threat Model Updates

911

security-related bugs, leaving in unfixed, Security
Push
Security/Privacy Bug Cause field, Make Sure the
Bug-Tracking Process Includes Security and Privacy
Bug Fields
Security/Privacy Bug Effect field, Build the Security
Leadership Team
SELinux, Create External Security Notes
senior executives (see .)
sensitive data

PII vs., Identify Threats to the System
security assumptions about, Create External
Security Notes
storing, Hash Functions

sensitive data stores, Threat Model Updates
sensitive PII, Privacy Impact Rating
sentinel characters in HTTP, Malforming packets on
the fly
separation of privilege, Common Secure-Design
Principles
serious emergency, Be Able to Install an Update
server application

vs. client application, Identify Threats to the
System
setup program, Pet Shop 4.0 Security
Assumptions

server code bug bar, Fixing Bugs Found Through
Fuzz Testing

912

server-credential storage, weak, Spoofing an
External Entity or a Process
servers

administration of, Pet Shop 4.0 Security
Assumptions
building rogue to fuzz data, Malforming packets
on the fly

service packs

handling exception issues in, Handling Exceptions
SDL applying to, Determine Whether the
Application Is Covered by SDL

service recovery configuration dialog box, Another
Factor That Influences Security: Reliability
services (see .)
setgid <groupname> in *nix, Step 3: Reduce
Privilege
SetSecurityDescriptorDacl function, Do Not Use
Banned Functions
setup

code, Code Reviews
documentation, Creating Prescriptive Security
Best Practice Documentation
questions in the Security Risk Assessment, Stage
3: Product Risk Assessment
risks involved in, Creating Prescriptive Security
Best Practice Documentation

SHA-1

913

HMAC usage of, Hash Functions
use permissible for backward compatibility,
Symmetric Stream Ciphers and Key Lengths

SHA-2

family of hash functions, Symmetric Stream
Ciphers and Key Lengths
HMAC usage of, Hash Functions

shared resources, minimizing, Common
Secure-Design Principles
ship-stopper issues

security vulnerabilities as, Windows 2000 and the
Secure Windows Initiative
treating security as, Windows 2000 and the Secure
Windows Initiative

shipping products, installing different component
versions, Support Your Entire Product
shipping teams, authoritative list of, Support Your
Entire Product
shipping, decision to stop or delay, Provide
Resources
side channels, exploitation of, Information Disclosure
of a Process
sidebars in end-user documentation, Mainline
Product Use Documentation
sign off process for releasing software, Stage 11:
Product Release
signature

914

performed by the update client, Make Your
Product Updatable
of a PNG file, A generic file-fuzzing process

signature system, testing, Repudiation
silver bullet, source tools as, Safe Exception
Handling: /SAFESEH
simple design in Agile methods, Project Inception
simplicity doctrine, Small Releases and Iterations
simultaneous updates, Update release, Support Your
Entire Product
single-user operating systems, A Short History of the
SDL at Microsoft
site-local access, Managed Code
AllowPartiallyTrustedCallers Attribute
SiteLock template, ActiveX "Safe for Scripting"
SiteLocked ActiveX controls, ActiveX "Safe for
Scripting", Managed Code
AllowPartiallyTrustedCallers Attribute
sizeof operator warning in PREfast, FxCop
SKIPJACK, Symmetric Block Ciphers and Key
Lengths
Slammer worm, Fuzzing Network Protocols
small iterations, doctrine of, Small Releases and
Iterations
small releases, doctrine of, Small Releases and
Iterations
smart fuzzing, A generic file-fuzzing process
smurf attack, Determine Risk
SOAP interfaces, Threat Model Updates
social-engineering attack vector, A generic
file-fuzzing process

915

sockets, Threat Model Updates
software, CMMI, TSP, and PSP

(see also .)
building in very rapid iterations, CMMI, TSP,
and PSP
complex, Common Secure-Design Principles,
Project Inception
considering the misuse of, Refactoring
development where SDL is not necessary, Is the
SDL Necessary for You?
fielded, Preparing to Respond
gathering evidence to counter repudiation claims,
Repudiation
making secure, A Continuing Challenge
managing on computers, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
reevaluating the attack surface of, Reevaluating
the Attack Surface of the Software
sharing and reuse of components, Create Your
Response Team
sign off process for releasing, Stage 11: Product
Release

software developers, smaller creating more secure
software, A Challenge to Large ISVs
software development

916

methods, Current Software Development Methods
Fail to Produce Secure Software
organizations, Is the SDL Necessary for You?
schedule, Holding an SDL Kick-Off Meeting for
the Development Team

software engineers

education and awareness of, Stage 0: Education
and Awareness
training about security issues, Using SDL
Practices with Agile Methods

software estimation, Stage 3: Product Risk
Assessment
Software Security Incident Response Process (see .)
software silver bullet, Current Software
Development Methods Fail to Produce Secure
Software
software vendors

improving software security, It’s Really About
Quality
rolling up security fixes, Which Vulnerabilities
Will You Respond To?

Solaris 10 operating system, privilege model, Step 2:
Who Needs Access to the Functionality and from
Where?
Sony BMG audio CDs, DRM software distributed
on, ActiveX "Safe for Scripting"
source code, Stage 6: Secure Coding Policies

917

(see also .)
bugs found by tools, Source-Code Analysis Tool
Traps
getting ownership of, Support Your Entire
Product
for the old version, Follow Your Plan
opening, "Given enough eyeballs, all bugs are
shallow"
policies, Source-Code Analysis Tool Traps
reviewing for the affected component, Managing
the security researcher relationship

source code files

assigning owners to, Training
owners swapping to review, Code Reviews

source code repository, querying, Code Reviews
source-code analysis tools, Safe Exception Handling:
/SAFESEH

benefits of, Source-Code Analysis Tool Traps
as a defensive backstop, Benefits of Source-Code
Analysis Tools
missing real bugs, Source-Code Analysis Tool
Traps
traps, Safe Exception Handling: /SAFESEH
using regularly, Refactoring

spawned processes, Step 3: Reduce Privilege
specialized security team, Security Response Process
spike

918

components of, Product Release
including a security expert, Product Release
as a very discrete event, Product Release

spike solution, Product Release, Small Releases and
Iterations, When a Bug Is Found, a Test Is Created
spiral model, "Many Eyeballs" Misses the Point
Altogether
splitpath functions, Banned String Tokenizing
Functions and Replacements
spoofing

an external entity or a process, Spoofing an
External Entity or a Process
term misused often, Identify Threats to the
System

Spoofing predefined value, Build the Security
Leadership Team
spoofing threats, Create One or More DFDs of the
Application Being Modeled

risk ranking, Determine Risk
as tampering threats, Identify Threats to the
System
using authentication, Plan Mitigations

sprint (in Scrum), CMMI, TSP, and PSP, Project
Inception
sprintf functions, SDL Banned Function Calls

list of banned with replacements, The Banned
APIs

919

SQL injection bug, Worlds of Security and Privacy
Collide
SQL Server 2000

checklists, guides, and how-to articles for
securing, Mainline Product Use Documentation
crashing a computer running an unpatched,
Create bogus packets
evaluated at Class C2, First Steps
listening on two ports, Fuzzing Network Protocols
security bulletins released for, Security Pushes
and Final Security Reviews
Service Pack 3, Security Pushes and Final
Security Reviews
sprintf function, SDL Banned Function Calls

SQL Server 2005

reduced attack surface in, Managed Code
AllowPartiallyTrustedCallers Attribute
tool to determine functionality enabled or
disabled by default, Managed Code
AllowPartiallyTrustedCallers Attribute

SQL/Script Injection predefined value, Make Sure
the Bug-Tracking Process Includes Security and
Privacy Bug Fields
squatting, Denial of Service Against a Data Flow
SSIRP (Software Security Incident Response
Process), Emergency Response Process, Follow Your
Plan

920

managed and executed by a cross-functional team,
Emergency Response Process
objective of, Emergency Response Process
phases of, Emergency Response Process

SSL/TLS

instructing users on how to acquire a certificate
and private key, Creating Prescriptive Security
Best Practice Documentation
solving a confidentiality problem, Counter the
Threat with Technology
solving a spoofing threat, Counter the Threat with
Technology
solving a tampering threat, Counter the Threat
with Technology

stack dynamic memory allocation functions, Banned
IsBad* Functions and Replacements
Stack Overflow exception, Fixing Bugs Found
Through Fuzz Testing
stack-based buffer overruns, Your Development
Team Will Make Mistakes
stack-based buffers, placing in higher memory
addresses, Use the Latest Compiler and Supporting
Tool Versions
Standard authentication, used by SQL Server, Pet
Shop 4.0 Security Assumptions
static analysis tools

921

deployed to detect security vulnerabilities in
source code, Windows 2000 and the Secure
Windows Initiative
requiring development team confirmation,
Tools-Use Validation
updates to, Update release
using under Agile methods, Risk Analysis

std::string template class in C++, Safe CRT Example
steady state resource level, required to implement the
SDL, Factors That Affect the Cost of SDL
stolen-device scenario, Building the Threat Model
stop products decisions, demonstrating management
support for the SDL, Provide Resources
storage

clearing, Information Disclosure of a Data Store
initializing, Information Disclosure of a Data
Store

stories (see .)
strcpy

as the dangerous function, Source-Code Analysis
Tool Traps
replacing with strncpy as not valid, The Banned
APIs

stream ciphers, Symmetric Block Ciphers and Key
Lengths
STRIDE

922

applying to a user story, Risk Analysis
applying to DFD elements, Identify Threats to the
System
components of, Create One or More DFDs of the
Application Being Modeled
identifying threat types, Create One or More
DFDs of the Application Being Modeled
mapping to DFD element types, Threat Tree
Patterns
meaning of the acronym, Identify Threats to the
System

string concatenation functions, The Banned APIs
string copy functions, The Banned APIs
string length functions, Banned IsBad* Functions
and Replacements
string tokenizing functions, Banned String
Tokenizing Functions and Replacements
strlen, replacing, Banned IsBad* Functions and
Replacements
strncpy function

banned use of, Banned "n" sprintf Functions and
Replacements
documentation on, Mainline Product Use
Documentation

strong name, ActiveX "Safe for Scripting"
strong permissions

923

examples of, Managed Code
AllowPartiallyTrustedCallers Attribute
vs. weak, More Attack Surface Elements,
Managed Code AllowPartiallyTrustedCallers
Attribute

strong-named assemblies, marking, ActiveX "Safe
for Scripting"
StrSafe functions

distribution method, Why the "n" Functions Are
Banned
example code converted to, Using StrSafe
more consistent on failure, Why the "n"
Functions Are Banned
vs. Safe CRT, Why the "n" Functions Are Banned
using in C or C++ code, Why the "n" Functions
Are Banned
Rtl versions for kernel use included, Using StrSafe

StrSafe StringCbCatEx function, The Banned APIs
strsafe.lib, Using StrSafe
sub-features (see .)
subnet access, Managed Code
AllowPartiallyTrustedCallers Attribute
support calls, alleviating the number of, Mainline
Product Use Documentation
Surface Area Configuration tool, Managed Code
AllowPartiallyTrustedCallers Attribute
Sutton, Willie the Actor, Rules Will Change
SWI (Secure Windows Initiative) team

924

analysis of the Windows Server 2003 security
push, Security Pushes and Final Security Reviews
chartered to work with product teams, Windows
2000 and the Secure Windows Initiative
continued growth of, Formalizing the Security
Development Lifecycle
created for Windows 2000, Windows 2000 and the
Secure Windows Initiative
eliminating newly discovered vulnerabilities,
Update release
focusing on component team-wide security days
or bug bashes, Windows 2000 and the Secure
Windows Initiative
formalizing of SDL, Security Pushes and Final
Security Reviews
helping engineers in product groups build
more-secure code, Windows 2000 and the Secure
Windows Initiative
lessons learned process, Update release
managing and executing the SDL, Triaging
security push activities planned by, Security
Pushes and Final Security Reviews
series of security bug bashes, Stage 0: Education
and Awareness
specialized security team analogous to, Is the
Project on Track?
staffing increased, Formalizing the Security
Development Lifecycle
updating the SDL, Formalizing the Security
Development Lifecycle

925

working with product groups, Seeking Scalability:
Through Windows XP

SWIAT (Secure Windows Initiative Attack Team),
Triaging

determining technical realities underlying an
SSIRP incident, Watch phase
developing information about mitigations and
workarounds, Content creation
gaining sufficient understanding to make a
recommendation, Watch phase
investigations leading to new classes of
vulnerabilities, Update release
verifying security fixes before they are released,
Managing the security researcher relationship
working with partners, Watch phase

symmetric algorithms, modes for, Symmetric Stream
Ciphers and Key Lengths
symmetric block cipher algorithms, Symmetric Block
Ciphers and Key Lengths
symmetric block ciphers, Symmetric Block Ciphers
and Key Lengths
symmetric block encryption algorithms, Symmetric
Block Ciphers and Key Lengths
symmetric encryption algorithms, Symmetric Stream
Ciphers and Key Lengths
symmetric stream cipher algorithms, Symmetric
Block Ciphers and Key Lengths
symmetric stream ciphers, Symmetric Block Ciphers
and Key Lengths

926

SYSTEM accounts in Windows, Create External
Security Notes
system designers, preparing to build DFDs, What to
Model
system requirements, What’s on the Companion
Disc?
system-level exceptions, Malforming packets on the
fly
System.Security.Cryptography namespace,
Cryptographic Technologies vs. Low-Level
Cryptographic Algorithms
systems, poorly maintained, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers

927

T

928

tamper detection for data flows, Threat Model
Updates
tampering

in customer questions, Risk Analysis
with a data flow, Tampering with a Data Flow
with a data store, Tampering with a Data Store
with a process, Tampering with a Process

Tampering predefined value, Build the Security
Leadership Team
tampering threats, Create One or More DFDs of the
Application Being Modeled

against the authentication process, Threat Tree
Patterns
to data stores, Counter the Threat with
Technology
mitigating with integrity technologies, Counter
the Threat with Technology
for processes, (4.7.1) Order Processor Process
risk ranking, Determine Risk
spoofing threats as, Identify Threats to the System
using integrity, Plan Mitigations

Target of Evaluation (TOE), Common Criteria
target, as the ability to disclose selected data,
Determine Risk
task-sensitive help, Mainline Product Use
Documentation
TCP ports, open, Pet Shop 4.0 Security Assumptions
TCP traffic, listening only for, ActiveX "Safe for
Scripting"

929

TCP, verifying the source address, More Attack
Surface Elements
TCP/1433 port, Fuzzing Network Protocols
TCP/IP smurf attack, Determine Risk
TCSEC (Trusted Computer System Evaluation
Criteria), First Steps, Your Development Team Will
Make Mistakes
Team Software Process (see .)
teams (see .)
technical classes for the security push, Preparing for
the Security Push
technical education at Microsoft, Stage 0: Education
and Awareness
technical expertise, Build the Security Leadership
Team
technical risk, translating to business impact, Stage
4: Risk Analysis
technology, countering threats with, Plan Mitigations
temper, losing at a researcher, Stay Cool
test harness for file and network fuzzing,
Malforming packets on the fly
test owners, assigning to executable files, Code
Reviews
test suite for the old version, Follow Your Plan
test team, applying their own security research skills,
Managing the security researcher relationship
testing

930

fixing defects found during, Stage 4: Risk Analysis
of security updates, Managing the security
researcher relationship
steps of, Stage 7: Secure Testing Policies
using a threat model to aid, Using a Threat Model
to Aid Code Review

testing policies

secure, Stage 7: Secure Testing Policies, Risk
Analysis
setting up to enforce coding rules, Secure Coding
and Testing Policies

tests

creating whenever a bug is found, When a Bug Is
Found, a Test Is Created
rerunning on every new build of code, Secure
Coding and Testing Policies
rerunning on every subsequent version, When a
Bug Is Found, a Test Is Created
rerunning with defensive code in place, Secure
Coding and Testing Policies
running under Agile methods, Security Push
triggering an integer overflow, Secure Coding and
Testing Policies

thoroughness, reasons for, Stay Cool
thread local storage issues, Consume the file and
observe the application
threat agent, Stage 4: Risk Analysis
threat mitigations, class on implementing, Ongoing
Education

931

threat modeling, Ongoing Education, Stage 4: Risk
Analysis

in The Basics presentation, A Short History of
Security Education at Microsoft
benefits of, Stage 4: Risk Analysis
complementary with secure design, Stage 2:
Define and Follow Design Best Practices
feeding the ASA process, Attack Surface Analysis
and Attack Surface Reduction
finding security design issues, Stage 4: Risk
Analysis
main output of, Stage 4: Risk Analysis
ownership of, What to Model
as part of the design process, What to Model
research on improving feedback from, Stage 4:
Risk Analysis
updated method, Stage 4: Risk Analysis

Threat Modeling in Depth class, Ongoing Education
threat models, Ongoing Education

932

aiding code review, (4.7.1) Order Processor
Process
aiding testing, Using a Threat Model to Aid Code
Review
building, What to Model
building for components, Refactoring
determining good, Using a Threat Model to Aid
Code Review
developing, Security Pushes and Final Security
Reviews
driving code review priority, Code Reviews
evaluating, Using a Threat Model to Aid Code
Review
examined by the Security Advisor, Holding an
SDL Kick-Off Meeting for the Development Team
good as a sign of a security healthy team, Stage 4:
Risk Analysis
high-level steps involved in creating, Building the
Threat Model
identifying requirements for, Stage 3: Product
Risk Assessment
keeping up to date, Preparing for the Security
Push, Documentation Scrub
line below, Pet Shop 4.0 External Security
Information
quality guidelines, Using a Threat Model to Aid
Code Review
requirements for, Analyzing the Questionnaire
review during the FSR, Stage 9: The Final
Security Review
reviewing, Is the Project on Track?

933

reviewing and updating, Penetration Testing
reviewing during the security push, Threat Model
Updates
tracking production and quality, Is the Project on
Track?
translating threats to customer questions, Risk
Analysis
treating like other specifications or design
documents, Stage 4: Risk Analysis
updating, Code Reviews
updating for evolving threats, Stage 4: Risk
Analysis

threat trees

934

denial of service against a data flow, Denial of
Service Against a Data Flow
denial of service against a data store, Denial of
Service Against a Data Store
denial of service against a process, Denial of
Service Against a Process
elevation of privilege, Denial of Service Against a
Data Store
information disclosure of a data flow, Information
Disclosure of a Data Flow
information disclosure of a data store,
Information Disclosure of a Data Store
information disclosure of a process, Information
Disclosure of a Process
patterns, Threat Tree Patterns
patterns replacing threat trees, (4.7.1) Order
Processor Process
role of, (4.7.1) Order Processor Process
spoofing an external entity or process, Spoofing
an External Entity or a Process
tampering with a data flow, Tampering with a
Data Flow
tampering with a data store, Tampering with a
Data Store
tampering with a process, Tampering with a
Process

threat types

935

determining, Create One or More DFDs of the
Application Being Modeled
high-level mitigation strategies by, Plan
Mitigations

threats

characteristics of, Identify Threats to the System
defining characteristics of, Identify Threats to the
System
determining for DFD elements, Identify Threats
to the System
identifying, Elevation of Privilege
listing potential, Identify Threats to the System
meaning of, Stage 4: Risk Analysis
taxonomy used by Microsoft, Create One or More
DFDs of the Application Being Modeled
uncovering before code is written, Stage 4: Risk
Analysis

timeboxes, CMMI, TSP, and PSP
TOE (Target of Evaluation), Common Criteria
tools

936

advancing quickly, Secure Coding and Testing
Policies
building as needed, Factors That Affect the Cost
of SDL
compared to manual searches, Factors That
Affect the Cost of SDL
creating, Creating Tools, Risk Analysis
production of easy-to-use, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
upgraded by Microsoft, Application Verifier
use validation during the FSR, Tools-Use
Validation

tradeoffs between risk and product functionality,
Stage 5: Creating Security Documents, Tools, and
Best Practices for Customers
trailing null, setting to nonnull, Malform a file
training

937

for all developers on an iteration, Security Push
classes replete with samples of vulnerable code,
Update release
delivery, Ongoing Education
developing new classes, Types of Training
Delivery
exercises and labs, Types of Training Delivery
implementing, Other Compliance Ideas
in-depth curriculum, A Short History of Security
Education at Microsoft
recording live, Types of Training Delivery
reducing the cost of security, Factors That Affect
the Cost of SDL
for the security push, Preparing for the Security
Push
for teams about to start a security push, Training
tracking attendance and compliance, Tracking
Attendance and Compliance
tracking attendance for teams, Factors That
Affect the Cost of SDL
up-front basic at a bug bash, A Short History of
Security Education at Microsoft

triage, Triaging
triage bars, Malforming packets on the fly
triaging, Security Response Process
trust boundaries, value of, Create One or More
DFDs of the Application Being Modeled
trust boundary DFD element type, Create One or
More DFDs of the Application Being Modeled
trust delta, Create One or More DFDs of the
Application Being Modeled

938

trust levels in customer questions, Risk Analysis
Trusted Computer System Evaluation Criteria (see .)
Trustworthy Computing initiative, Seeking
Scalability: Through Windows XP

commitment to, Commitment at Microsoft
memo results, A Short History of Security
Education at Microsoft
pillars of, Another Factor That Influences
Security: Reliability
security pushes immediately after, Stage 8: The
Security Push

TSP (Team Software Process), "Many Eyeballs"
Misses the Point Altogether

improving the development processes, CMMI,
TSP, and PSP
security and, CMMI, TSP, and PSP

turn off the feature mitigation strategy, Determine
Risk, Plan Mitigations
TwC (Trustworthy Computing) (see .)
two-factor authentication, Common Secure-Design
Principles
typosquatting, Identify Threats to the System

939

U

940

UDP (User Datagram Protocol), More Attack
Surface Elements
UDP packets, creating bogus, Fuzzing Network
Protocols
UDP/1434 port, Fuzzing Network Protocols
UML (Unified Modeling Language)

Use Cases, Define Use Scenarios
diagram, Risk Analysis

unauthenticated network entry points, Threat Model
Updates
unauthenticated users, Tampering with a Process
unexpected errors, Fixing Bugs Found Through Fuzz
Testing
unfixed security bugs

marking, Threat Models Review
review during the FSR, Threat Models Review

uninitialized variables (dirty stacks), Consume the
file and observe the application
unit security testing, Coding to Standards
unit test, coding first, Coding to Standards
Universal Plug and Play (UPnP), Seeking Scalability:
Through Windows XP
unmanaged code

compiling and linking, Unmanaged Compiler
Flags
languages producing, Factors That Affect the Cost
of SDL
runtime verification tool for, Application Verifier

untrusted users

941

minimizing code exposure to, Attack Surface
Analysis and Attack Surface Reduction
requests, Step 3: Reduce Privilege

unverifiable code, Code Reviews
up-front groundwork, required by Agile methods,
Using SDL Practices with Agile Methods
update content, digitally signing, Make Your Product
Updatable
update deployment and installation, Support All
Your Customers
update-quality process, skipping, Knowing What to
Skip
updated threat-modeling process, Building the
Threat Model
updates

942

aggressive communication about the need to
install it, Be Able to Install an Update
being able to build, Follow Your Plan
being able to install, Be Able to Install an Update
cost of applying, It’s Really About Quality
customer agreements to maintain the
confidentiality of, Testing
customers advised to apply immediately,
Managing the security researcher relationship
decision to release incomplete or partially tested,
Knowing What to Skip
detecting, copying, and installing with no manual
intervention, Support All Your Customers
ensuring secure delivery of, Make Your Product
Updatable
ensuring that customers can actually install,
Support All Your Customers
failing to test, Take Your Time
making public at a single Web site, First Steps
minimizing changes included in, Creating the fix
multiple required for related vulnerabilities,
Creating the fix
products automatically downloading, Determine
Whether the Application Is Covered by SDL
release of followed by malicious activity, Watch
phase
releasing, Content creation
releasing before the Resolve phase can be closed,
Resolve phase

943

releasing for all affected software versions and
language versions at the same time, Update
release
releasing for all versions at the same time,
Creating the fix
releasing on a predictable schedule, Update
release
releasing to address only the most obvious or
critical vulnerabilities, Be Able to Install an
Update
reverse-engineering, Enough Is Enough: The
Threats Have Changed
techniques for installing, Support All Your
Customers
testing, Managing the security researcher
relationship
ways of getting to on the Web, Support All Your
Customers

updating

achieving a consistent experience, Support All
Your Customers
technology, Make Your Product Updatable
transition to a consistent approach, Support All
Your Customers

upgrade process, security implications of, Creating
Prescriptive Security Best Practice Documentation
upgrade scenarios, being wary of, Creating
Prescriptive Security Best Practice Documentation
UPnP component of Windows XP, Seeking
Scalability: Through Windows XP

944

urgent response, Be Able to Install an Update
URL Decoding Zone Spoofing Vulnerability in
Internet Explorer (CVE-2005-0054), Elevation of
Privilege
URL, hosting mobile control, Malforming packets on
the fly
URLScan Security Tool, Stage 5: Creating Security
Documents, Tools, and Best Practices for Customers
usability, conflicting with security, Stage 5: Creating
Security Documents, Tools, and Best Practices for
Customers
usage statistics, Analyzing the Questionnaire
use scenarios

defining, Building the Threat Model
gathered during the threat modeling process,
Stage 4: Risk Analysis
not the same as UML Use Cases, Define Use
Scenarios

user account access, Step 2: Who Needs Access to the
Functionality and from Where?
user and public perception, New Kinds of
Vulnerabilities Will Appear
User Datagram Protocol (see .)
user manual, insecure practices in, Creating
Prescriptive Security Best Practice Documentation
user requests, handled by low-privilege processes,
Step 3: Reduce Privilege
user stories, Project Inception

945

adding constraints to, Augmenting Agile Methods
with SDL Practices
applying the risk analysis process to, Risk
Analysis
completing, Augmenting Agile Methods with SDL
Practices
customers as key contributors to, Refactoring
delivering to customers, Product Release
evaluating, Security Push
including the customer’s security requirements,
Augmenting Agile Methods with SDL Practices
showing interaction among components, Risk
Analysis

User Stories Applied, For Agile Software
Development, Augmenting Agile Methods with SDL
Practices
user-facing code, Step 3: Reduce Privilege
user-mode code, Create One or More DFDs of the
Application Being Modeled
users

applications continuously monitoring, Privacy
Ranking 1
as external entities, Risk Analysis
fallibility of, Preparing to Respond
informing of resources and best practices,
Mainline Product Use Documentation
informing of security ramifications,
Attack-Surface Scrub
interaction with, Identify Threats to the System
warning as a mitigation strategy, Plan Mitigations

946

V

947

Valentine, Brian, Is the SDL Necessary for You?
valid domain name with a typo, Identify Threats to
the System
valid files, collecting a library of, A generic
file-fuzzing process
variable argument n sprintf functions, Banned "n"
sprintf Functions and Replacements
variable argument sprintf functions, Banned "n"
sprintf Functions and Replacements
vendors, Watch phase

(see also ; ; ; ; ; .)
researchers prejudice against, Stay Cool

Verifier.exe, Penetration Testing
/verify option of AppVerifier, Consume the file and
observe the application, Application Verifier
versions

responding to vulnerabilities in all supported,
Support Your Entire Product
updating old, Follow Your Plan
upgrading on short notice, Follow Your Plan

Vigilar, Writing Secure Code instructor-led class,
Other Compliance Ideas
violated channel in data flow, Tampering with a Data
Flow
visibility, Is the SDL Necessary for You?
visible recognition, during product security pushes,
Be Visible
Visual Basic (vbc.exe), minimum and recommended
version of, Application Verifier

948

Visual C# compiler (csc.exe), minimum and
recommended version of, Application Verifier
Visual C++ tools, Tools-Use Validation
Visual Studio 2005

AppVerif version built into, Application Verifier
compiler containing built-in function
deprecations, Safe CRT Example
documentation in, Mainline Product Use
Documentation
FxCop in, FxCop
PREfast version, SDL-Required Tools and
Compiler Options
reduced attack surface in, Managed Code
AllowPartiallyTrustedCallers Attribute
Safe CRT included with, Using StrSafe

Visual Studio, versions of tools in, Application
Verifier
vulnerabilities, Triaging

949

(see also .)
assessing potential impact of reported, Triaging
being proactive about detecting exploitation of,
Take Your Time
new classes of, Formalizing the Security
Development Lifecycle
classes not introduced in managed code, Factors
That Affect the Cost of SDL
code with numerous prior, Code Reviews
cottage industry specializing in discovering, First
Steps
creating exploit code to take advantage of,
Ongoing Education
determining a system’s level of, Stage 3: Product
Risk Assessment
diagnosing the root cause and making the fix,
Create Your Response Team
discovery of a new class of, Provide Resources
documenting failures, Update release
e-mail alias for reporting, Take Your Time
evaluating difficulty of discovery of, Which
Vulnerabilities Will You Respond To?
example of how not to fix, Creating the fix
factors mitigating or amplifying, Triaging
failing to take the time to search for related, Take
Your Time
finding before the researchers do, Make Your
Product Updatable
finding in information systems, Fixing Bugs
Found Through Fuzz Testing
fixes eliminating, Creating the fix

950

fixing a pattern of, Make Your Product Updatable
gaining a full understanding of, Triaging
highlighting the presence of, Which
Vulnerabilities Will You Respond To?
irresponsible disclosure leading to SSIRP
mobilization, Watch phase
new kinds appearing, Your Development Team
Will Make Mistakes
knowing the severity and impact of, Take Your
Time
labeling in all code, Attack Surface Analysis and
Attack Surface Reduction
learning from, Find the Vulnerabilities Before the
Researchers Do
product or component with a long history of,
Factors That Affect the Cost of SDL
quest for related, Creating the fix
real-world challenges associated with responding
to, Stage 12: Security Response Execution
reducing in the software during development,
Stage 2: Define and Follow Design Best Practices
related, Creating the fix
releasing a fix in a patch or update, Which
Vulnerabilities Will You Respond To?
releasing fixes for the most urgent, Creating the
fix
responding to as long as the product is supported,
Create Your Response Team
responding to the discovery of, Stage 10: Security
Response Planning

951

resulting from design errors, Factors That Affect
the Cost of SDL
searching for related, Creating the fix
severity of reported, Triaging
ship schedule delayed for continuing discovery of,
Provide Resources
specific classes of, Is the Project on Track?
tracking the impact of externally discovered, Is
the Project on Track?
treated as ship-stopper issue, Windows 2000 and
the Secure Windows Initiative
triaging all incoming, Triaging
working plan for responding to, Triaging

vulnerability finders

building credibility for companies or consulting
practices, First Steps
seeking alternative targets to Microsoft, Is the
SDL Necessary for You?

Vulnerability in Graphics Rendering Engine Could
Allow Remote Code Execution, Update release
vulnerability reports

as a learning experience, Make Your Product
Updatable
receipt of, Security Response Process
sources of, Where Do Vulnerability Reports Come
From?
validity of, Triaging
varieties of, Security Response Process

952

vulnerability research on Microsoft software, Is the
SDL Necessary for You?
vulnerable parameters, Use the Latest Compiler and
Supporting Tool Versions

953

W

954

-w warning level in Borland C++, Use the Latest
Compiler and Supporting Tool Versions
/W4 warning level

in Microsoft Visual C++, Stage 6: Secure Coding
Policies
using for new code, Unmanaged Compiler Flags

-Wall warning level in GNU C Compiler, Use the
Latest Compiler and Supporting Tool Versions
warn the user mitigation strategy, Determine Risk,
Plan Mitigations
warning level, compiling with the highest possible,
Stage 6: Secure Coding Policies
Watch phase of the SSIRP, Emergency Response
Process
waterfall model, "Many Eyeballs" Misses the Point
Altogether
wcscat function, SDL Banned Function Calls
wcscpy function, SDL Banned Function Calls
weak algorithms, Cryptographic Agility
Weak Authentication predefined value, Make Sure
the Bug-Tracking Process Includes Security and
Privacy Bug Fields
Weak Authorization/Inappropriate ACL predefined
value, Make Sure the Bug-Tracking Process Includes
Security and Privacy Bug Fields
weak crypto algorithms, Refactoring
weak cryptography, silently falling back to,
Cryptographic Agility

955

weak permissions vs. strong, More Attack Surface
Elements, Managed Code
AllowPartiallyTrustedCallers Attribute
weaknesses, informing customers about, Mainline
Product Use Documentation
Web servers

attacks on, It’s Really About Quality
functionality of, Step 1: Is This Feature Really
That Important?
spoofing, Identify Threats to the System
trend in compromised, Stage 5: Creating Security
Documents, Tools, and Best Practices for
Customers

Web services, rejecting HTTP GET requests,
Managed Code AllowPartiallyTrustedCallers
Attribute
Web site defacements, surge in visible, Take Your
Time
Web sites, cross-site scripting vulnerabilities on, New
Kinds of Vulnerabilities Will Appear
Web, physical access to, Pet Shop 4.0 Security
Assumptions
Web.config files, Pet Shop 4.0 Security Assumptions
WebDAV, Step 1: Is This Feature Really That
Important?
Win32 code

compiling native, Use the Latest Compiler and
Supporting Tool Versions
SHA-2 hash functions available in, Hash
Functions

956

Windows

aspects of privilege, Step 2: Who Needs Access to
the Functionality and from Where?
controlling a process and monitoring during
execution, Malform a file
creating accounts with limited privileges, Step 3:
Reduce Privilege
Driver Verifier included with, Penetration Testing
monitoring an application’s interaction with,
Application Verifier
potentially vulnerable constructs in, Do Not Use
Banned Functions
restarting a service as a security issue, Another
Factor That Influences Security: Reliability

Windows (DCPromo), wvsprintf function, SDL
Banned Function Calls
Windows (MSGina), lstrcpy function, SDL Banned
Function Calls
Windows (NetDDE), wcscat function, SDL Banned
Function Calls
Windows (USER), wcscpy function, SDL Banned
Function Calls
Windows .NET Server, Security Pushes and Final
Security Reviews
Windows 2000

evaluation at Class EAL4, First Steps
new security features, New Threats, New
Responses
security penetration test team deployed, Windows
2000 and the Secure Windows Initiative

957

Windows 3.1, A Short History of the SDL at
Microsoft
Windows 95, A Short History of the SDL at
Microsoft
Windows authentication (see .)
Windows development team, Security Pushes and
Final Security Reviews

(see also .)
change to a new compiler, Security Pushes and
Final Security Reviews

Windows division

engineering staff size, Security Pushes and Final
Security Reviews
implementing recommendations of the Security
Task Force, Windows 2000 and the Secure
Windows Initiative
security push conducted by, Security Pushes and
Final Security Reviews

Windows Error Report (WER) statistics, Stage 5:
Creating Security Documents, Tools, and Best
Practices for Customers
Windows Metafile Format (WMF), Update release

flaw, Stage 5: Creating Security Documents,
Tools, and Best Practices for Customers
urgent response to vulnerability, Be Able to
Install an Update

Windows NT, First Steps
Windows NT 3.1, A Short History of the SDL at
Microsoft

958

Windows NT Versions 3.51 and 4.0, First Steps
Windows penetration team (see .)
Windows RPC/DCOM, coding bug, Benefits of
Source-Code Analysis Tools
Windows Security Push of 2002, Training
Windows Server 2003

activities undertaken to assess the security of,
Security Pushes and Final Security Reviews
checklists, guides, and how-to articles for
securing, Mainline Product Use Documentation
evaluation at Class EAL4 of the Common
Criteria, First Steps
security push, Security Pushes and Final Security
Reviews
security push focused on, Security Pushes and
Final Security Reviews
security track record of, Security Pushes and
Final Security Reviews
security-related compiler changes for, Security
Pushes and Final Security Reviews
users unaffected by the Sasser worm, Step 2: Who
Needs Access to the Functionality and from
Where?

Windows Server 2003 Driver Development Kit
(DDK), PREfast first publicly available in,
SDL-Required Tools and Compiler Options
Windows Server 2003 SP1

improving the security of Internet Explorer,
Security Pushes and Final Security Reviews
release of, Creating the fix

959

Windows services, Step 2: Who Needs Access to the
Functionality and from Where?

disabling unneeded, Creating Tools
low privilege and, Step 3: Reduce Privilege

Windows Vista

defining only needed privileges, Step 3: Reduce
Privilege
Internet Explorer 7 as the browser component of,
Security Pushes and Final Security Reviews
mandatory integrity control, Create External
Security Notes
verification phase of, Code Reviews

Windows XP

960

balancing security with usability and backward
compatibility, Common Secure-Design Principles
buffer overrun vulnerability in the UPnP
component, Seeking Scalability: Through
Windows XP
evaluation at Class EAL4 of the Common
Criteria, First Steps
explicitly enabling the firewall by default, Step 2:
Who Needs Access to the Functionality and from
Where?
fundamental changes to improve the security of
Internet Explorer, Security Pushes and Final
Security Reviews
reduced attack surface in, Managed Code
AllowPartiallyTrustedCallers Attribute
release delayed to address a security bug, Seeking
Scalability: Through Windows XP
seeking scalability through, Windows 2000 and
the Secure Windows Initiative
service recovery configuration dialog box,
Another Factor That Influences Security:
Reliability
users protected from the Zotob worm, Creating
the fix

Windows XP SP2, release of, Creating the fix
WinSock C/C++ code, Step 2: Who Needs Access to
the Functionality and from Where?
WMF (see .)
Won’t Fix, security bugs marked, Threat Models
Review
workarounds

961

determining appropriate, Product Release
in security bulletins, Content creation

workforce, education and awareness of, Stage 0:
Education and Awareness
Write Access Violation error, Malforming packets on
the fly
Writing Secure Code, Security Pushes and Final
Security Reviews, Other Compliance Ideas
wvsprintf function, SDL Banned Function Calls

X
XCP digital rights management (DRM) software,
More Attack Surface Elements
XML payloads, fuzzing, Malforming packets on the
fly
XP (see .)
xp_cmdshell, disabling, Managed Code
AllowPartiallyTrustedCallers Attribute

Z
zero, setting numeric data types to, Malform a file
Zotob worm, Step 2: Who Needs Access to the
Functionality and from Where?, Creating the fix

962

	The Security Development Lifecycle: SDL: A Process for Developing Demonstrably More Secure Software
	Introduction
	Organization of This Book
	Part II, "The Security Development Lifecycle Process"
	Part III, "SDL Reference Material"
	The Future Evolution of the SDL
	What’s on the Companion Disc?
	System Requirements
	Acknowledgments
	References
	I. The Need for the SDL
	Another Factor That Influences Security: Reliability
	It’s Really About Quality
	Why Major Software Vendors Should Create More Secure Software
	Why In-House Software Developers Should Create More Secure Software
	Why Small Software Developers Should Create More Secure Software
	Summary
	References
	2. Current Software Development Methods Fail to Produce Secure Software
	Understanding Security Bugs
	Critical Mass
	"Many Eyeballs" Misses the Point Altogether
	Proprietary Software Development Methods
	Agile Development Methods
	Common Criteria
	Summary
	References
	3. A Short History of the SDL at Microsoft
	New Threats, New Responses
	Windows 2000 and the Secure Windows Initiative
	Seeking Scalability: Through Windows XP
	Security Pushes and Final Security Reviews
	Formalizing the Security Development Lifecycle
	A Continuing Challenge
	References
	4. SDL for Management
	Is the SDL Necessary for You?
	Effective Commitment
	Be Visible
	Provide Resources
	Stop Products
	Managing the SDL
	Rules of Thumb
	Is the Project on Track?
	Summary
	References
	II. The Security Development Lifecycle Process
	Ongoing Education
	Types of Training Delivery
	Exercises and Labs
	Tracking Attendance and Compliance
	Measuring Knowledge
	Implementing Your Own In-House Training
	Key Success Factors and Metrics
	Summary
	References
	6. Stage 1: Project Inception
	Assign the Security Advisor
	Holding an SDL Kick-Off Meeting for the Development Team
	Holding Design and Threat Model Reviews with the Development Team
	Analyzing and Triaging Security-Related and Privacy-Related Bugs
	Acting as a Security Sounding Board for the Development Team
	Preparing the Development Team for the Final Security Review
	Working with the Reactive Security Team
	Build the Security Leadership Team
	Make Sure the Bug-Tracking Process Includes Security and Privacy Bug Fields
	Determine the "Bug Bar"
	Summary
	References
	7. Stage 2: Define and Follow Design Best Practices
	Attack Surface Analysis and Attack Surface Reduction
	Step 2: Who Needs Access to the Functionality and from Where?
	Step 3: Reduce Privilege
	More Attack Surface Elements
	Weak Permissions vs. Strong Permissions
	.NET Code vs. ActiveX Code
	ActiveX "Safe for Scripting"
	ActiveX SiteLocked Controls
	Managed Code AllowPartiallyTrustedCallers Attribute
	Summary
	References
	8. Stage 3: Product Risk Assessment
	Attack Surface Questions
	Mobile-Code Questions
	Security Feature–Related Questions
	General Questions
	Analyzing the Questionnaire
	Privacy Impact Rating
	Privacy Ranking 2
	Privacy Ranking 3
	Pulling It All Together
	Summary
	References
	9. Stage 4: Risk Analysis
	What to Model
	Building the Threat Model
	The Threat-Modeling Process
	2. Gather a List of External Dependencies
	3. Define Security Assumptions
	4. Create External Security Notes
	Pet Shop 4.0 Security Assumptions
	Pet Shop 4.0 External Security Information
	What Is Modeled and What Do You Depend On?
	5. Create One or More DFDs of the Application Being Modeled
	6. Determine Threat Types
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Elevation of Privilege
	7. Identify Threats to the System
	8. Determine Risk
	9. Plan Mitigations
	Remove the Feature
	Turn Off the Feature
	Warn the User
	Counter the Threat with Technology
	(1.0→4.2→1.0) Data Flow from Pet Shop User to Web Application and Back
	(4.7.10) Audit Log Data Store
	(4.7.1) Order Processor Process
	Using a Threat Model to Aid Code Review
	Using a Threat Model to Aid Testing
	Key Success Factors and Metrics
	Summary
	References
	10. Stage 5: Creating Security Documents, Tools, and Best Practices for Customers
	Creating Prescriptive Security Best Practice Documentation
	Mainline Product Use Documentation
	Help Documentation
	Developer Documentation
	Creating Tools
	Summary
	References
	11. Stage 6: Secure Coding Policies
	Use Defenses Added by the Compiler
	Safe Exception Handling: /SAFESEH
	Compatibility with Data Execution Prevention: /NXCOMPAT
	Use Source-Code Analysis Tools
	Benefits of Source-Code Analysis Tools
	Do Not Use Banned Functions
	Reduce Potentially Exploitable Coding Constructs or Designs
	Use a Secure Coding Checklist
	Summary
	References
	12. Stage 7: Secure Testing Policies
	Collect a library of valid files
	Malform a file
	Consume the file and observe the application
	Fuzzing Network Protocols
	Record-fuzz-replay packets
	Malforming packets on the fly
	Miscellaneous Fuzzing
	Fixing Bugs Found Through Fuzz Testing
	Penetration Testing
	Run-Time Verification
	Reviewing and Updating Threat Models if Needed
	Reevaluating the Attack Surface of the Software
	Summary
	References
	13. Stage 8: The Security Push
	Training
	Code Reviews
	Threat Model Updates
	Security Testing
	Attack-Surface Scrub
	Documentation Scrub
	Are We Done Yet?
	Summary
	References
	14. Stage 9: The Final Security Review
	Threat Models Review
	Unfixed Security Bugs Review
	Tools-Use Validation
	After the Final Security Review Is Completed
	Summary
	15. Stage 10: Security Response Planning
	New Kinds of Vulnerabilities Will Appear
	Rules Will Change
	Preparing to Respond
	Where Do Vulnerability Reports Come From?
	Security Response Process
	Triaging
	Creating the fix
	Security fixes for multiple product versions and locales
	Managing the security researcher relationship
	Testing
	Content creation
	Press outreach
	Update release
	Lessons learned
	Emergency Response Process
	Alert and Mobilize phase
	Assess and Stabilize phase
	Resolve phase
	Security Response and the Development Team
	Support Your Entire Product
	Support All Your Customers
	Make Your Product Updatable
	Find the Vulnerabilities Before the Researchers Do
	Summary
	References
	16. Stage 11: Product Release
	17. Stage 12: Security Response Execution
	Take Your Time
	Watch for Events That Might Change Your Plans
	Follow Your Plan
	Making It Up as You Go
	Be Able to Build an Update
	Be Able to Install an Update
	Know the Priorities When Inventing Your Process
	Knowing What to Skip
	Summary
	References
	III. SDL Reference Material
	Project Inception
	Establishing and Following Design Best Practices
	Risk Analysis
	Creating Security Documents, Tools, and Best Practices for Customers
	Secure Coding and Testing Policies
	Security Push
	Final Security Review
	Product Release
	Security Response Execution
	Augmenting Agile Methods with SDL Practices
	Small Releases and Iterations
	Moving People Around
	Simplicity
	Spike Solutions
	Refactoring
	Constant Customer Availability
	Coding to Standards
	Coding the Unit Test First
	Pair Programming
	Integrating Often
	Leaving Optimization Until Last
	When a Bug Is Found, a Test Is Created
	Summary
	References
	19. SDL Banned Function Calls
	Banned String Concatenation Functions and Replacements
	Banned sprintf Functions and Replacements
	Banned "n" sprintf Functions and Replacements
	Banned Variable Argument sprintf Functions and Replacements
	Banned Variable Argument "n" sprintf Functions and Replacements
	Banned "n" String Copy Functions and Replacements
	Banned "n" String Concatenation Functions and Replacements
	Banned String Tokenizing Functions and Replacements
	Banned Makepath Functions and Replacements
	Banned Splitpath Functions and Replacements
	Banned scanf Functions and Replacements
	Banned "n" scanf Functions and Replacements
	Banned Numeric Conversion Functions and Replacements
	Banned gets Functions and Replacements
	Banned IsBad* Functions and Replacements
	Banned OEM Conversion Functions and Replacements
	Banned Stack Dynamic Memory Allocation Functions and Replacements
	Banned String Length Functions and Replacements
	Why the "n" Functions Are Banned
	Important Caveat
	Choosing StrSafe vs. Safe CRT
	Using StrSafe
	Using Safe CRT
	Other Replacements
	Tools Support
	ROI and Cost Impact
	Metrics and Goals
	References
	20. SDL Minimum Cryptographic Standards
	Use Cryptographic Libraries
	Cryptographic Agility
	Default to Secure Cryptographic Algorithms
	Cryptographic Algorithm Usage
	Symmetric Stream Ciphers and Key Lengths
	Symmetric Algorithm Modes
	Asymmetric Algorithms and Key Lengths
	Hash Functions
	Message Authentication Codes
	Data Storage and Random Number Generation
	Generating Random Numbers and Cryptographic Keys
	Generating Random Numbers and Cryptographic Keys from Passwords or Other Keys
	References
	21. SDL-Required Tools and Compiler Options
	FxCop
	Application Verifier
	Minimum Compiler and Build Tool Versions
	References
	22. Threat Tree Patterns
	Tampering with a Process
	Tampering with a Data Flow
	Tampering with a Data Store
	Repudiation
	Information Disclosure of a Process
	Information Disclosure of a Data Flow
	Information Disclosure of a Data Store
	Denial of Service Against a Process
	Denial of Service Against a Data Flow
	Denial of Service Against a Data Store
	Elevation of Privilege
	References
	Appendix
	Index

